P waves<span> are produced by all earthquakes. They are compression </span>waves<span> that </span>form <span>when rocks break due to pressure in the Earth. S </span>waves<span> are secondary </span>waves<span> that are also created during an earthquake. They travel at a slower speed than the </span>p-waves<span>.
S waves are the waves that come after the earthquake and P waves
</span>
I am thinking that maybe the problem is not with the calibration. It might be that the buffered solution is already expired since at this point the solution is already not stable and will give a different pH reading than what is expected.
Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water = 
Using equation to solve the problem

E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water



now ,


taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)
Question:
A 63.0 kg sprinter starts a race with an acceleration of 4.20m/s square. What is the net external force on him? If the sprinter from the previous problem accelerates at that rate for 20m, and then maintains that velocity for the remainder for the 100-m dash, what will be his time for the race?
Answer:
Time for the race will be t = 9.26 s
Explanation:
Given data:
As the sprinter starts the race so initial velocity = v₁ = 0
Distance = s₁ = 20 m
Acceleration = a = 4.20 ms⁻²
Distance = s₂ = 100 m
We first need to find the final velocity (v₂) of sprinter at the end of the first 20 meters.
Using 3rd equation of motion
(v₂)² - (v₁)² = 2as₁ = 2(4.2)(20)
v₂ = 12.96 ms⁻¹
Time for 20 m distance = t₁ = (v₂ - v ₁)/a
t₁ = 12.96/4.2 = 3.09 s
He ran the rest of the race at this velocity (12.96 m/s). Since has had already covered 20 meters, he has to cover 80 meters more to complete the 100 meter dash. So the time required to cover the 80 meters will be
Time for 100 m distance = t₂ = s₂/v₂
t₂ = 80/12.96 = 6.17 s
Total time = T = t₁ + t₂ = 3.09 + 6.17 = 9.26 s
T = 9.26 s
The average act on her during the deceleration is 4.47 meters per second.
<u>Explanation</u>:
<u>Given</u>:
youngster mass m = 50.0 kg
She steps off a 1.00 m high platform that is s = 1 meter
She comes to rest in the 10-meter second
<u>To Find</u>:
The average force and momentum
<u>Formulas</u>:
p = m * v
F * Δ t = Δ p
vf^2= vi^2+2as
<u>Solution</u>:
a = 9.8 m/s
vi = 0
vf^2= 0+2(9.8)(1)
vf^2 = 19.6
vf = 4.47 m/s .
Therefore the average force is 4.47 m/s.