Work done by a given force is given by

here on sled two forces will do work
1. Applied force by Max
2. Frictional force due to ground
Now by force diagram of sled we can see the angle of force and displacement
work done by Max = 

Now similarly work done by frictional force



Now total work done on sled


Work = Force x Distance
Assuming that this work is being done parallel to the displacement that is, but under that assumption:
W = (50)(10)
W = 500 J
Assuming the ball follows classical 2D projectile motion (moves in a parabola) and that the height y = the maximum height the ball goes in the y direction (because this would be its midpoint), then the velocity at height y is equal to the initial x component of velocity. At the midpoint, the y component is zero, so the velocity only depends on the x component. Projectiles move at constant speed in the x direction, so X = Xo. As long as you know actual values for Vi and either the initial angle or one initial component, then you can solve for Xo using trigonometry. Xo is thus the velocity of the ball once it has reached its maximum height.
Answer:
The weight of the body in the new planet is 100 newtons.
Explanation:
From Newton's Law of Gravitation we find that gravitational force is directly proportional to mass of the planet and inversely proportional to the square of its radius. From this fact we can build the following relationship:
(1)
Where:
,
- Gravitational force, measured in newtons.
,
- Mass of planet, measured in kilograms.
,
- Radius of the planet, measured in meters.
If we know that
,
and
, then the expected gravitational force in the new planet is:



The weight of the body in the new planet is 100 newtons.
Answer:
Interviewing and observation are two methods of collecting qualitative data as part of research. ... Interviews vary from structured, in which a set list of questions is asked of every interviewee, to unstructured, which is open-ended.