Answer: 100 suns
Explanation:
We can solve this with the following relation:

Where:
is the diameter of a dime
is the diameter of the Sun
is the distance between the Sun and the pinhole
is the amount of dimes that fit in a distance between the sunball and the pinhole
Finding
:


This is roughly the diameter of the Sun
Now, the distance between the Earth and the Sun is one astronomical unit (1 AU), which is equal to:

So, we have to divide this distance between
in order to find how many suns could it fit in this distance:

Answer: thermal
Explanation:
Moving particles transfer thermal energy through a fluid by forming convection currents.
Answer:
Energy consumed by the electric kettle in 9.5 min =Pt=(2.5×10
3
)×(9.5×60)=14.25×10
5
J
Energy usefully consumed =msΔT=3×(4.2×10
3
)×(100−15)=10.71×10
5
where s=4.2J/g
o
C= specific heat of water and boiling point temp=100
o
C
Heat lost =14.25×10
5
−10.71×10
5
=3.54×10
5
Answer:
619.8 N
Explanation:
The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

where
T is the tension
m is the mass of the rock
v is the speed
r is the radius of the circular path
At the beginning,
T = 50.4 N
v = 21.1 m/s
r = 2.51 m
So we can use the equation to find the mass of the rock:

Later, the radius of the string is decreased to
r' = 1.22 m
While the speed is increased to
v' = 51.6 m/s
Substituting these new data into the equation, we find the tension at which the string breaks:

The time taken to hit the ground is 3.9 s, the range is 18m and the final velocity is 42.82 m/s
<h3>
Motion Under Gravity</h3>
The motion of an object under gravity is the vertical motion of the object under the influence of acceleration due to gravity.
Given that a ball is thrown horizontally from the roof of a building 75 m tall with a speed of 4.6 m/s.
a. how much later does the ball hit the ground?
The time can be calculated by considering the vertical component of the motion with the use of formula below.
h = ut + 1/2gt²
Where
- Initial velocity u = 0 ( vertical velocity )
- Acceleration due to gravity g = 9.8 m/s²
Substitute all the parameters into the formula
75 = 0 + 1/2 × 9.8 × t²
75 = 4.9t²
t² = 75/4.9
t² = 15.30
t = √15.3
t = 3.9 s
b. how far from the building will it land?
The range can be found by using the formula
R = ut
Where u = 4.6 m/s ( horizontal velocity )
R = 4.6 × 3.9
R = 18 m
c. what is the velocity of the ball just before it hits the ground?
The final velocity will be
v = u + gt
v = 4.6 + 9.8 × 3.9
v = 4.6 + 38.22
v = 42.82 m/s
Therefore, the answers are 3.9 s, 18 m and 42.82 m/s
Learn more about Vertical motion here: brainly.com/question/24230984
#SPJ1