A mercury filled balloon would fall faster then water. Mercury is heavier.
Answer: 313920
Explanation:First, we’re going to assume that the top of the circular plate surface is 2 meters under the water. Next, we will set up the axis system so that the origin of the axis system is at the center of the plate.
Finally, we will again split up the plate into n horizontal strips each of width Δy and we’ll choose a point y∗ from each strip. Attached to this is a sketch of the set up.
The water’s surface is shown at the top of the sketch. Below the water’s surface is the circular plate and a standard xy-axis system is superimposed on the circle with the center of the circle at the origin of the axis system. It is shown that the distance from the water’s surface and the top of the plate is 6 meters and the distance from the water’s surface to the x-axis (and hence the center of the plate) is 8 meters.
The depth below the water surface of each strip is,
di = 8 − yi
and that in turn gives us the pressure on the strip,
Pi =ρgdi = 9810 (8−yi)
The area of each strip is,
Ai = 2√4− (yi) 2Δy
The hydrostatic force on each strip is,
Fi = Pi Ai=9810 (8−yi) (2) √4−(yi)² Δy
The total force on the plate is found on the attached image.
Reactions occur when two or more molecules interact and the molecules change. Bonds between atoms are broken and created to form new molecules. That's it.
The magnitude of the friction force is 25 N
Explanation:
To solve this problem, we just have to analyze the forces acting on the block along the horizontal direction. We have:
- The horizontal component of the pulling force,
, where F = 50 N is the magnitude and
is the angle between the direction of the force and the horizontal; this force acts in the forward direction - The force of friction,
, acting in the backward direction
According to Newton's second law, the net force acting on the block in the horizontal direction must be equal to the product between the mass of the block and its acceleration:

where
m is the mass of the block
is the horizontal acceleration
However, the block is moving at constant speed, so the acceleration is zero:

So the equation becomes
(1)
The net force here is given by
(2)
And so, by combining (1) and (2), we find the magnitude of the friction force:

Learn more about force of friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly