Answer:
m = 0.0125 kg
Explanation:
Let us apply the formula for the speed of a wave on a string that is under tension:

where F = tension force
μ = mass per unit length
Mass per unit length is given as:
μ = m / l
where m = mass of the string
l = length of the string
This implies that:

Let us make mass, m, the subject of the formula:

From the question:
F = 20 N
l = 4.50 m
v = 85 m/s
Therefore:

Answer:
the answer is B
Explanation:
wave x has the highest hertz making it the answer
The magnitude of the unknown height of the projectile is determined as 16.1 m.
<h3>
Magnitude of the height</h3>
The magnitude of the height of the projectile is calculated as follows;
H = u²sin²θ/2g
H = (36.6² x (sin 29)²)/(2 x 9.8)
H = 16.1 m
Thus, the magnitude of the unknown height of the projectile is determined as 16.1 m.
Learn more about height here: brainly.com/question/1739912
#SPJ1
Answer:
Mass can never be negative. Everything has mass. Just like how they ask you to find area under the graph in maths. If the area is in the 3rd and 4th quadrant, when calculated, you would get negative answer.However, area can not be negative because it is a place/ location. It's exactly the same as mass.
Answer:
Yes
Explanation:
Any transparent surface in practical is neither a perfect absorber of electromagnetic waves neither a perfect reflector. Generally all the transparent surfaces reflect some amount of irradiation and the other parts are absorbed and transmitted.
<u>That is given by as relation:</u>

where:
absorptivity which is defined as the ratio of the absorbed radiation to the total irradiation
reflectivity is defined as the ratio of reflected radiation to the total irradiation
transmittivity is defined as the ratio of total transmitted radiation to the total irradiation