Specific heat capacity of any substance comes with the unit : J/(g*degree C)
for molar capacity , change gram -> moles unit ( J / moles * degree C)
4.18 J / mol - degree C
H = 1.01 g * 2 = 2.02 g
O = 16 g
2.02 + 16 = 18.02 g
Now :- 4.18 J / mol- degree C) * 18.02 / 1 mole H2O
molar heat = 75.3 J / mol - degree C
<span />
Answer:
E) 2.38
Explanation:
The pH of any solution , helps to determine the acidic strength of the solution ,
i.e. ,
- Lower the value of pH , higher is its acidic strength
and ,
- Higher the value of pH , lower is its acidic strength .
pH is given as the negative log of the concentration of H⁺ ions ,
hence ,
pH = - log H⁺
From the question ,
the concentration of the solution is 0.0042 M , and being it a strong acid , dissociates completely to its respective ions ,
Therefore , the concentration of H⁺ = 0.0042 M .
Hence , using the above equation , the value of pH can be calculated as follows -
pH = - log H⁺
pH = - log ( 0.0042 M )
pH = 2.38 .
The correct answer of the given question above would be a PICTOGRAM. OSHA’s required pictograms must be in the shape of a square set at a point and
include a black hazard symbol on a white background with a red frame sufficiently wide enough to
be clearly visible.
Answer:
Yes
Explanation:
There is a difference between the homogeneous mixture of the hydrogen and the oxygen in a 2:1 ratio and the sample of the water vapor.
In the homogeneous mixture of the hydrogen and the oxygen which are present in the ratio, 2:1 , the elements are not chemically combined. They are explosive also as both shows their specific properties. They can be separated by physical means (Condensation, diffusion).
On the other hand, in water vapor, the two elements are chemically bonded in a specific mixture which cannot be separated via physical means. Water has its unique properties and they can be separated by chemical means only.
Alkali metal - Group 1 metal
Alkaline earth metal - Group 2 metal
Iron triad - metal
Halogens - most are diatomic and are nonmetals - Cl2, Br2, I2
Noble gases - nonmetals and are not reactive due to full valence shell.
Boron group - metalloid
Oxygen group - oxygen molecule - a diatomic molecule composed of oxygen atoms, which are nonmetals.