A)they can interbreed and produce fertile offsprings
a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.
![\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k](https://tex.z-dn.net/?f=%5Cmathbf%20n_1%3D%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_1%7D%7B%5Cpartial%20y%7D%5Ctimes%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_1%7D%7B%5Cpartial%20x%7D%3D-%5Cmathbf%20k)
![\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j](https://tex.z-dn.net/?f=%5Cmathbf%20n_2%3D%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_2%7D%7B%5Cpartial%20u%7D%5Ctimes%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_2%7D%7B%5Cpartial%20v%7D%3D-u%5C%2C%5Cmathbf%20j)
![\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i](https://tex.z-dn.net/?f=%5Cmathbf%20n_3%3D%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_3%7D%7B%5Cpartial%20z%7D%5Ctimes%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_3%7D%7B%5Cpartial%20y%7D%3D-%5Cmathbf%20i)
![\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j](https://tex.z-dn.net/?f=%5Cmathbf%20n_4%3D%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_4%7D%7B%5Cpartial%20v%7D%5Ctimes%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_4%7D%7B%5Cpartial%20u%7D%3Du%5C%2C%5Cmathbf%20i%2Bu%5C%2C%5Cmathbf%20j)
![\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k](https://tex.z-dn.net/?f=%5Cmathbf%20n_5%3D%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_5%7D%7B%5Cpartial%20y%7D%5Ctimes%5Cdfrac%7B%5Cpartial%5Cmathbf%20s_5%7D%7B%5Cpartial%20u%7D%3D2%5Ccos%20u%5C%2C%5Cmathbf%20i%2B2%5Csin%20u%5C%2C%5Cmathbf%20k)
Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.
![\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_%7BS_1%7D%5Cmathbf%20f%28x%2Cy%2Cz%29%5Ccdot%5Cmathrm%20d%5Cmathbf%20S%3D%5Cint_0%5E2%5Cint_0%5E%7B6-x%7Df%28x%2Cy%2C0%29%5Ccdot%5Cmathbf%20n_1%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20dx)
![=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_0%5E2%5Cint_0%5E%7B6-x%7D0%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20dx%3D0)
![\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_%7BS_2%7D%5Cmathbf%20f%28x%2Cy%2Cz%29%5Ccdot%5Cmathrm%20d%5Cmathbf%20S%3D%5Cint_0%5E2%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D%5Cmathbf%20f%28u%5Ccos%20v%2C0%2Cu%5Csin%20v%29%5Ccdot%5Cmathbf%20n_2%5C%2C%5Cmathrm%20dv%5C%2C%5Cmathrm%20du)
![\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8](https://tex.z-dn.net/?f=%5Cdisplaystyle%3D%5Cint_0%5E2%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D-u%5E2%282%5Csin%20v%2B%5Ccos%20v%29%5C%2C%5Cmathrm%20dv%5C%2C%5Cmathrm%20du%3D-8)
![\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_%7BS_3%7D%5Cmathbf%20f%28x%2Cy%2Cz%29%5Ccdot%5Cmathrm%20d%5Cmathbf%20S%3D%5Cint_0%5E2%5Cint_0%5E6%5Cmathbf%20f%280%2Cy%2Cz%29%5Ccdot%5Cmathbf%20n_3%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20dz)
![=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_0%5E2%5Cint_0%5E60%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20dz%3D0)
![\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_%7BS_4%7D%5Cmathbf%20f%28x%2Cy%2Cz%29%5Ccdot%5Cmathrm%20d%5Cmathbf%20S%3D%5Cint_0%5E2%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D%5Cmathbf%20f%28u%5Ccos%20v%2C6-u%5Ccos%20v%2Cu%5Csin%20v%29%5Ccdot%5Cmathbf%20n_4%5C%2C%5Cmathrm%20dv%5C%2C%5Cmathrm%20du)
![=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_0%5E2%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D-u%5E2%282%5Csin%20v%2B%5Ccos%20v%29%5C%2C%5Cmathrm%20dv%5C%2C%5Cmathrm%20du%3D%5Cfrac%7B40%7D3%2B6%5Cpi)
![\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_%7BS_5%7D%5Cmathbf%20f%28x%2Cy%2Cz%29%5Ccdot%5Cmathrm%20d%5Cmathbf%20S%3D%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D%5Cint_0%5E%7B6-2%5Ccos%20u%7D%5Cmathbf%20f%282%5Ccos%20u%2Cy%2C2%5Csin%20u%29%5Ccdot%5Cmathbf%20n_5%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20du)
![=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D%5Cint_0%5E%7B6-2%5Ccos%20u%7D12%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20du%3D36%5Cpi-24)
c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.
![\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_S%5Cmathbf%20f%28x%2Cy%2Cz%29%5Ccdot%5Cmathrm%20d%5Cmathbf%20S%3D%5Ciiint_R%5Cmathrm%7Bdiv%7D%5Cmathbf%20f%28x%2Cy%2Cz%29%5C%2C%5Cmathrm%20dV)
where <em>R</em> is the interior of <em>S</em>. We have
![\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7](https://tex.z-dn.net/?f=%5Cmathrm%7Bdiv%7D%5Cmathbf%20f%28x%2Cy%2Cz%29%3D%5Cdfrac%7B%5Cpartial%283x%29%7D%7B%5Cpartial%20x%7D%2B%5Cdfrac%7B%5Cpartial%28x%2By%2B2z%29%7D%7B%5Cpartial%20y%7D%2B%5Cdfrac%7B%5Cpartial%283z%29%7D%7B%5Cpartial%20z%7D%3D7)
The integral is easily computed in cylindrical coordinates:
![\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dx%28r%2Ct%29%3Dr%5Ccos%20t%5C%5Cy%28r%2Ct%29%3D6-r%5Ccos%20t%5C%5Cz%28r%2Ct%29%3Dr%5Csin%20t%5Cend%7Bcases%7D%2C0%5Cle%20r%5Cle%202%2C0%5Cle%20t%5Cle%5Cdfrac%5Cpi2)
![\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_0%5E2%5Cint_0%5E%7B%5Cfrac%5Cpi2%7D%5Cint_0%5E%7B6-r%5Ccos%20t%7D7r%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20dt%5C%2C%5Cmathrm%20dr%3D42%5Cpi-%5Cfrac%7B56%7D3)
as expected.
Answer:
Anybody which is in state of rest ,will be in rest if we don't apply any external force ...
Answer:
Explanation:
Given:
Force, f = 5 N
Velocity, v = 5 m/s
Power, p = energy/time
Energy = mass × acceleration × distance
Poer, p = force × velocity
= 5 × 5
= 25 W.
Note 1 watt = 0.00134 horsepower
But 25 watt,
0.00134 hp/1 watt × 25 watt
= 0.0335 hp.