For this, we need the formula:
V = k q / r
where k is the Coulombs law constant = 9 x 10^9 N
q is the charge of the hydrogen nucleus (proton) = <span>1.6 x 10^-19 C</span>
r is the distance
Simply plug in the values and solve for V
Answer:
h> 2R
Explanation:
For this exercise let's use the conservation of energy relations
starting point. Before releasing the ball
Em₀ = U = m g h
Final point. In the highest part of the loop
Em_f = K + U = ½ m v² + ½ I w² + m g (2R)
where R is the radius of the curl, we are considering the ball as a point body.
I = m R²
v = w R
we substitute
Em_f = ½ m v² + ½ m R² (v/R) ² + 2 m g R
em_f = m v² + 2 m g R
Energy is conserved
Emo = Em_f
mgh = m v² + 2m g R
h = v² / g + 2R
The lowest velocity that the ball can have at the top of the loop is v> 0
h> 2R
Answer:
v = 8.09 m/s
Explanation:
For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.
Let's calculate the energy
starting point. Higher
Em₀ = U = m gh
final point. To go down the slope
Em_f = K = ½ m v²
The work of the friction force is
W = fr L cos 180
to find the friction force let's use Newton's second law
Axis y
N - W_y = 0
N = W_y
X axis
Wₓ - fr = ma
let's use trigonometry
sin θ = y / L
sin θ = 11/110 = 0.1
θ = sin⁻¹ 0.1
θ = 5.74º
sin 5.74 = Wₓ / W
cos 5.74 = W_y / W
Wₓ = W sin 5.74
W_y = W cos 5.74
the formula for the friction force is
fr = μ N
fr = μ W cos θ
Work is friction force is
W_fr = - μ W L cos θ
Let's use the relationship of work with energy
W + ΔU = ΔK
-μ mg L cos 5.74 + (mgh - 0) = 0 - ½ m v²
v² = - 2 μ g L cos 5.74 +2 (gh)
v² = 2gh - 2 μ gL cos 5.74
let's calculate
v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74
v² = 215.6 -150.16
v = √65.44
v = 8.09 m/s
Answer:
distance between object and image = 18.9 cm
Explanation:
given data
radius of curvature = 18 cm
focal length = 1/2 radius of curvature
magnification = 40%
to find out
distance between object and image
solution
we know lens formula that is
1/f = 1/v + 1/u ....................1
here f = 18 /2 and v and u is object and image distance
and we know m = 40% = 0.40
so 0.40 = -v / u
so here v = - 0.40 u
so from equation 1
1/f = 1/v + 1/u
2/18 = - 1/0.40u + 1/u
u = -13.5 cm ..................2
and
v = -0.40 (- 13.5)
v = 5.4 cm ......................3
so from equation 2 and 3
distance between object and image = 5.4 + 13.5
distance between object and image = 18.9 cm
There are a variety of waves from light waves to mechanical waves. Waves can exhibit different effects like the Doppler Effect.
All light waves behave in a similar manner. They either get transmitted, reflected, absorbed, refracted, polarized, diffracted, or scattered based off of the composition of the object and the wavelength of the light.
According to Wikipedia, “One important property of mechanical waves is that their amplitudes are measured in an unusual way, displacement divided by (reduced) wavelength. When this gets comparable to unity, significant nonlinear effects such as harmonic generation may occur, and, if large enough, may result in chaotic effects.” Mechanical waves are chaotic and its “amplitudes” are measured unusually.
Diffraction is when light bends around objects and spread after passing out through small openings. “Diffraction occurs with all waves, including sound waves, water waves, and electromagnetic waves such as light that the eye can see.”-Wikipedia. Here is the formula to Diffraction: <em>d </em>sin <em>θ </em>= <em>nλ</em>
Doppler effect can occur for any type of wave like sound or water waves. An example of this is when we hear a police car with its sirens on, coming towards us. The closer you are to the police car, the higher the wavelength, but the farther away you are, the lower the wavelength.
<em />