Answer: a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
Explanation:
Acceleration is the rate of change in the velocity per time
a = change in velocity/time
a = ∆v/t
average acceleration a = (v2 -v1)/t. ....1
Given;
Final velocity v2 = 1.63m/s
Initial velocity v1 = -1.15ms
time taken t = 2.11s
Substituting into eqn 1
a = [1.63 - (-1.15)]/2.11
a = (1.63+1.15)/2.11
a = 2.78/2.11
a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
What Kepler's constant ? ? ! ?
The only constant in Kepler's laws is in the third one, where it says something to the
effect that (square of a body's period) / (cube of its distance from the central body)
is a constant.
That means it's a constant for multiple little ones orbiting the same central body.
But it's not the same constant for other central bodies.
It's one constant for the planets, asteroids, and comets orbiting the sun.
It's a different constant for the moon, TV satellites, weather satellites,
and military satellites orbiting the Earth.
1.) potential energy
2.)potential and kinetic
3.)The roller coaster car has the most kinetic energy at point X i know this because the car is moving and kinetic energy has the power to move or change things therefore point X is when the roller coaster car has the most energy.
4.)potential energy
5.)kinetic energy
6.) potential and kinetic energy
Answer:

Explanation:
We have an uniformly accelerated motion, with a negative acceleration. Thus, we use the kinematic equations to calculate the distance will it take to bring the car to a stop:

The acceleration can be calculated using Newton's second law:

Recall that the maximum force of friction is defined as
. So, replacing this:

Now, we calculate the distance:

If you know the distance and the time I travelled that distance.
You just have to divide the time from the distance to get velocity
V =d
_
t