Answer:
d. Boyle's
Explanation:
Boyle's Law: States that the volume of a fixed mass of gas is inversely proportional proportional to its pressure, provided temperature remains constant.
Stating this mathematically. this implies that:
V∝1/P
V = k/P, Where k is the constant of proportionality
PV = k
P₁V₁ = P₂V₂
Where P₁ and P₂ are the initial and final pressure respectively, V₁ and V₂ are the the initial and final volume respectively.
Hence the right option is d. Boyle's
Answer:
Ratio of series current to parallel
= 1 : 8
Explanation:
Total resistance Rt
For series, Rt = 2+2+2+2 = 4ohms
For parallel, 1/Rt = 1/2 + 1/2 + 1/2 + 1/2
1/Rt = 4/2, Rt = 2/4 ohms.
If we use a 1V battery, then,
I = V/Rt
I = 1/4 = 0.25 ampere for series arrangement.
I = 1/0.5 = 2 ohms.
Ratio of current of series to parallel = 0.25 : 2
= 1 : 8
Answer:
the active region is bound by cutoff region and saturation or power dissipation region.
Explanation:
Answer:
1.02 m/s²
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
Acceleration can simply be defined as the change of velocity with time. Mathematically, it can be expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
a = (v – u) / t
a = (6.6 – 0) / 6.5
a = 6.6 / 6.5
a = 1.02 m/s²
Therefore, the acceleration of the car is 1.02 m/s²
Explanation:
According to Rydberg's formula, the wavelength of the balmer series is given by:

R is Rydberg constant for an especific hydrogen-like atom, we may calculate R for hydrogen and deuterium atoms from:

Here,
is the "general" Rydberg constant,
is electron's mass and M is the mass of the atom nucleus
For hydrogen, we have,
:

Now, we calculate the wavelength for hydrogen:
![\frac{1}{\lambda}=R_H(\frac{1}{2^2}-\frac{1}{3^2})\\\lambda=[R_H(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.0967*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5646*10^{-7}m=656.46nm](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%3DR_H%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5C%5C%5Clambda%3D%5BR_H%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D%5B1.0967%2A10%5E7m%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D6.5646%2A10%5E%7B-7%7Dm%3D656.46nm)
For deuterium, we have
:
![R_D=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{2*1.67*10^{-27}kg})}\\R_D=1.09707*10^7m^{-1}\\\\\lambda=[R_D(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.09707*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5629*10^{-7}=656.29nm](https://tex.z-dn.net/?f=R_D%3D%5Cfrac%7B1.09737%2A10%5E7m%5E%7B-1%7D%7D%7B%281%2B%5Cfrac%7B9.11%2A10%5E%7B-31%7Dkg%7D%7B2%2A1.67%2A10%5E%7B-27%7Dkg%7D%29%7D%5C%5CR_D%3D1.09707%2A10%5E7m%5E%7B-1%7D%5C%5C%5C%5C%5Clambda%3D%5BR_D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D%5B1.09707%2A10%5E7m%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D6.5629%2A10%5E%7B-7%7D%3D656.29nm)