1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
2 years ago
7

Investigar la función de los espejos esféricos y como funciona, en el microscopio.

Physics
1 answer:
NikAS [45]2 years ago
4 0

Answer:

yea

Explanation:

You might be interested in
in as small room fan of rating 50 watt is used for 10hrs 2bulb of rating 10v are used for 8hrs daily.calculate monthly. electric
Pie

Answer:

The electric bill for June is Rs198000

Explanation:

Convert volt to watt, but in order to do so I need to know the amps and since it is not provided I converted if the amps was 1.

I multiple 50 with 10 then  with 30 so I know how much watt the fan takes at June.

Since there are 2 light bulb I multiple 10 with 2 than with 8 than with 30.

15000 watts for the fan,

4800 watts for light bulb,

add them and then times it by 10.

Rs198000

4 0
2 years ago
How can waves travel through ground?
Artyom0805 [142]
The vibration caused by p waves is a volume changes, alternatimg from compression to expansión in the direction that the waves is traveling.
7 0
3 years ago
A +27 nCnC point charge is placed at the origin, and a +6 nCnC charge is placed on the xx axis at x=1mx=1m. At what position on
svet-max [94.6K]

Answer:

The position on the x axis is 0.32 m.

Explanation:

Given that,

Point charge = 27 nC

Charge = 6 nC

Distance = 1

We need to calculate the distance

Using formula of electric field

\dfrac{kq_{1}}{x^2}=\dfrac{kq_{2}}{(r-x)^2}

Put the value into the formula

\dfrac{27\times10^{-9}}{x^2}=\dfrac{6\times10^{-9}}{(1-x)^2}

\dfrac{27}{x^2}=\dfrac{6}{(1-x)^2}

\dfrac{(1-x)^2}{x^2}=\dfrac{27}{6}

\dfrac{1-x}{x}=\sqrt{\dfrac{27}{6}}

\dfrac{1}{x}=\sqrt{\dfrac{27}{6}}+1

x=0.32\ m

Hence, The position on the x axis is 0.32 m.

5 0
2 years ago
Which of the following is a true statement?
pishuonlain [190]

I think the answer is A.........

7 0
2 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
Other questions:
  • A person travels by car from one city to another. She drives for 23.5 min at 74.5 km/h, 15.9 min at 111 km/h, 49.2 min at 38.7 k
    9·1 answer
  • What property do the following elements have in common? sulfur, iodine, and magnesium A) Same phase at room temperature. B) Good
    10·2 answers
  • Newton’s third law explains what happens when two objects ______.
    15·1 answer
  • What is the capital of sweden?
    12·2 answers
  • A cell is _______ if it lacks a nucleus and membrane-bound organelles.
    5·2 answers
  • A 10kg box is sliding at 50m/s. Find the momentum
    15·1 answer
  • Select the Moon and use the Info view to determine which of the following statements is correct. The Last Quarter Moon.... rises
    11·1 answer
  • Consider again the objects you ranked by distance. Suppose each object emitted a burst of light right now. Rank the objects from
    13·1 answer
  • A transverse wave on a string is described by the wave functiony(x, t) = 0.350 sin (1.25x + 99.6t)where x and y are in meters an
    13·1 answer
  • Of all the hydrogen in the oceans, 0.0300 % of the mass is deuterium. The oceans have a volume of 317 million mi³.(a) If nuclear
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!