In BPC
tan\theta =a/b = 3/4
\theta = tan^-1(0.75)
\theta = 36.87 deg
BP = sqrt(a^2 + b^2) = sqrt((3)^2 + (4)^2) = 5 m
Eb = k Q/BP^2 = (9 x 10^9) (16 x 10^-9)/5^2 = 5.76 N/C
Ea = k Q/AP^2 = (9 x 10^9) (16 x 10^-9)/4^2 = 9 N/C
Ec = k Q/CP^2 = (9 x 10^9) (16 x 10^-9)/3^2 = 16 N/C
Net electric field along X-direction is given as
Ex = Ea + Eb Cos36.87 = (9) + (5.76) Cos36.87 = 13.6 N/C
Net electric field along X-direction is given as
Ey = Ec + Eb Sin36.87 = (16) + (5.76) Sin36.87 = 19.5 N/C
Net electric field is given as
E = sqrt(Ex^2 + Ey^2) = sqrt((13.6)^2 + (19.5)^2) = 23.8 N/C
Answer:
F = (913.14 , 274.87 )
|F| = 953.61 direction 16.71°
Explanation:
To calculate the resultant force you take into account both x and y component of the implied forces:

Thus, the net force over the body is:

Next, you calculate the magnitude of the force:

and the direction is:

Answer:
Because of immense gravity
Explanation:
The formation of the Solar system was a very dynamic process. A lot of matter was thrown towards the outer solar system which further formed the Gas giants: Jupiter, Saturn, Uranus, and Neptune. The size of these outer planets is huge so is their gravity.
Because of their huge gravity a lot of matter which was scattered in the outer solar system got attracted towards them. This matter is what make the rings of the outer planets. Also, because of immense gravity they captured larger bodies thus making them their Moons.
Answer:
Conduction heat transfer is the transfer of <em>heat by means of molecular excitement within a material without bulk motion</em> of the matter.
Explanation:
Conduction heat transfer in gases and liquids is due to the collisions and diffusion of the molecules during heir random motion.
You can write the equation in 3 different ways, depending on which quantity you want to be the dependent variable. Any one of the three forms can be derived from either of the other two with a simple algebra operation. They're all the same relationship, described by "Ohm's Law".
==> Current = (potential difference) / (resistance)
==> Potential difference = (current) x (resistance)
==> Resistance = (potential difference) / (resistance)