To solve this problem we will apply the kinematic equations of linear motion and centripetal motion. For this purpose we will be guided by the definitions of centripetal acceleration to relate it to the tangential velocity. With these equations we will also relate the linear velocity for which we will find the points determined by the statement. Our values are given as


PART A )


Calculate the velocity of the motorcycle when the net acceleration of the motorcycle is 




Now calculate the angular velocity of the motorcycle



Calculate the angular acceleration of the motorcycle



Calculate the time needed by the motorcycle to reach an acceleration of




PART B) Calculate the velocity of the motorcycle when the net acceleration of the motorcycle is 




PART C)
Calculate the radial acceleration of the motorcycle when the velocity of the motorcycle is 



Calculate the net acceleration of the motorcycle when the velocity of the motorcycle is 



PART D) Calculate the maximum constant speed of the motorcycle when the maximum acceleration of the motorcycle is 




Answer:
in a magnet there is a magnetic field that draws ever mental to it
The sun light that received by the water in the ocean will increase the average temperature of the water and make it warmer.
With the help of wind and current, the warm water will spread out to another region, and increasing the average temperature in that region and affecting its overall climate.
Example The temperature rise in Valdivia<span>, Chile and in Beijing, China after receiving warm water from arctic.</span>
Answer:
29.7 m/s fast, velocity is 29.7 m/s
Explanation:
Applying,
v² = u²+2gs...................... Equation 1
Where v = final velocity, u = initial velocity, g = acceleration due to gravity, s = distance.
Given: u = 0 m/s (dropped from height), s = 45 m
Constant: g = 9.8 m/s²
Substitute these values into equation 1
v² = 0²+2×9.8×45
v² = 882
v = √(882)
v = 29.7 m/s.
Hence the stone will be moving 29.7 m/s fast and the velocity is also 29.7 m/s