1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Galina-37 [17]
2 years ago
13

Which color in the rainbow has the shortest wavelength?

Physics
1 answer:
klio [65]2 years ago
8 0

Answer:

violet

Explanation:

violet has shortest wavelength

You might be interested in
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
3 years ago
The 480 g bar is rotating as shown what is the angular momentum of the bar about the axle?
Greeley [361]
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:

Angular momentum L = Iω, where 
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>

<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>

<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>

<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>

<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
4 0
3 years ago
How much electrical energy is used by the river cooker oven rated 800 W ,230 V is switched on for 30 minutes
mariarad [96]

Answer:

E = 1440 kJ

Explanation:

It is given that,

Power of a cooker oven is 800 W

Voltage at which it is operated is 230 V

Time, t = 30 minutes = 1800 seconds

We need to find the electrical energy used by the cooker oven. The product of power and time is equal to the energy consumed. So,

E=P\times t\\\\E=800\ W\times 1800\ s\\\\E=1440000\ J\\\\\text{or}\\\\E=1440\ kJ

So, electrical energy of 1440 kJ is consumed by the cooker oven.

8 0
3 years ago
) A stone initially moving at 8.0 m/s on a level surface comes to rest due to friction after it travels 11 m. What is the coeffi
natali 33 [55]

Answer:

-0.3

Explanation:

F' = μmg ........... Equation 1

Where F' = Frictional force, μ = coefficient of kinetic friction, m = mass of the stone, g = acceleration due to gravity.

But,

F' = ma ............ Equation 2

Where a = acceleration of the stone.

Substitute equation 2 into equation 1

ma = μmg

dividing both side of the equation by m

a = μg

make μ the subject of the equation

μ = a/g............... Equation 3

From the equation of motion,

v² = u²+2as................. Equation 4

Where v and u are the final and the initial velocity respectively, s = distance.

Given: v = 0 m/s (to rest), u = 8.0 m/s, s = 11 m.

Substitute into equation 4

0² = 8² + 2×11×a

22a = -64

a = -64/22

a = -32/11 m/s² = -2.91 m/s²

substitute the values of a and g into equation 3

μ = -2.91/9.8

μ = -0.297

μ ≈ -0.3

4 0
3 years ago
A machine has a mechanical advantage of 4.5. What force is put out by the machine if the force applied to the machine is 800 N?
Ghella [55]

If the machine's mechanical advantage is 4.5, that means that

Output force = (4.5) x (Input force) .

We know the input force, and we need to find the output force.  Rather than wander around the room looking at the floor while our hair smolders, let's try putting the numbers we know into the equation I wrote up there.  OK ?

Output force = (4.5) x (Input force)

Output force = (4.5) x (800 N)

Now dooda multiplication:

<em>Output force = 3,600 N</em> .  

That's exactly what the question asked for.  So we're done !

3 0
3 years ago
Other questions:
  • Which of the following is the closest to the scientific fact
    6·1 answer
  • Consider a uniform solid sphere of radius R and mass M rolling without slipping. Which form of its kinetic energy is larger, tra
    14·1 answer
  • A long-distance runner is running at a constant speed of 5 m/s.
    5·1 answer
  • A rock climber is going up a narrow space between two vertical rocks. The distance between the rocks allows the climber to brace
    15·1 answer
  • 2a. A wave has a frequency of 50 Hz and a wavelength of 0.10 m. How do you find the wave speed? *
    6·1 answer
  • Can someone help me please it is number 7
    7·1 answer
  • In preparing to shoot an arrow, an archer pulls a bow string back 0.424 m by exerting a force that increases uniformly from 0 to
    15·1 answer
  • What is the sound intensity level in decibels? Use the usual reference level of I0 = 1.0×10−12 W/m2.
    13·1 answer
  • 500 J of work is used to decrease the angular velocity of a disk from 65 rad/s to 52 rad/s.What is the rotational inertia of the
    15·1 answer
  • 4. A lamp in a circuit has 4 Amps of current. If there is 32 12 of resistance
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!