You're talking about a grain of sand or a stone or a rock that's drifting in space, and then the Earth happens to get in the way, so the stone falls down to Earth, and it makes a bright streak of light while it's falling through the atmosphere and burning up from the friction.
-- While it's drifting in space, it's a <em>meteoroid</em>.
-- While it's falling through the atmosphere burning up and making a bright streak of light, it's a <em>meteor</em>.
-- If it doesn't completely burn up and there's some of it left to fall on the ground, then the leftover piece on the ground is a <em>meteorite</em>.
Answer
given,
diameter of the pipe is = (14 ft)4.27 m
minimum speed of the skater must have at very top = ?
At the topmost point of the pipe the normal force will be equal to zero.
F = mg
centripetal force acting on the skateboard

equating both the force equation


r = d/2 = 14/ 2 = 7 ft
or
r = 4.27/2 = 2.135 m
g = 32 ft/s² or g = 9.8 m/s²

v = 14.96 ft/s
or

v = 4.57 m/s
Yes, peer pressure affects one's physical activity routine. It can do so both negatively and positively. For instance, if one is pressured to do drugs when around their peers, it would most likely lead to an addiction that lasts even when they are not with those people anymore. However, from a positive viewpoint, one's peers could also pressure them to do something productive, such as trying a new beneficial activity that they are afraid of (ex. trying out for a talent show.) This could lead to a disruption in routine as that individual would begin practicing for said talent show. Hence, peer pressure can be both negative and positive, but in both instances, it changes the routine of the individual effected.
Hi there!
We can begin by deriving the equation for how long the ball takes to reach the bottom of the cliff.

There is NO initial vertical velocity, so:

Rearrange to solve for time:

Plug in the given height and acceleration due to gravity (g ≈ 9.8 m/s²)

Now, use the following for finding the HORIZONTAL distance using its horizontal velocity:

Answer:
When the electrical current passes through the conductors, the polarity is changed, and the diaphragm interacts with the permanent magnets, vibrating and creating sound.
Explanation: