The molar mass of aluminum sulftae is 342.14 g/mol.
Since the subscript shows that there are 3 sulfurs within the substance, the total mass of sulfur is 96.21g/mol
Now take the mass of the sulfur and divide it by the molar mass of aluminum sulfate, then multiply by 100:
(96.21/342.15)(100) = 28.1% mass composition of sulfate
Follow Avogadro’s Number
1 mole = 6.02 x 10^23
So we can do it
4.77x10^25/6.02x10^23 = 79.2 mole
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.
An ion-dipole interaction is the result of an electrostatic interaction between a charged ion and a molecule that has a dipole. It is an attractive force that is commonly found in solutions, especially ionic compounds dissolved in polar liquids. A cation can attract the partially negative end of a neutral polar molecule, while an anion attracts the positive end of a polar molecule. Ion-dipole attractions become stronger as the charge on the ion increases or as the magnitude of the dipole of the polar molecule increases.
This force of attraction is between an ion and a charge , it is weaker force than covalent bond and ionic bond . EX - The ion dipole interaction takes place between water and sodium ion , in it there is a small charge on oxygen molecule in water which is attracted by sodium charge .
Most commonly found in solutions. Especially important for solutions of ionic compounds in polar liquids.
A positive ion (cation) attracts the partially negative end of a neutral polar molecule.
to learn more about dipole interactions:-
https://brainly.in/question/1157107