Answer:
0.3192 M
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V1) = 5.32 mL Molarity of stock solution (M1) = 6 M
Volume of diluted solution (V2) = 100 mL
Molarity of diluted solution (M2) =?
We can obtain the molarity of the diluted solution by using the dilution formula as shown follow:
M1V1 = M2V2
6 × 5.32 = M2 ×100
31.92 = M2 × 100
Divide both side by 100
M2 = 31.92 / 100
M2 = 0.3192 M
Therefore, the molarity of the diluted solution is 0.3192 M.
Answer: 8.691 mols of CO₂
Explanation:
To find the number of moles in a given grams, you want to use the molar mass.
Let's first find the molar mass of CO₂.
Carbon's molar mass is 12.011 g/mol
Oxygen's molar mass is 15.999 g/mol
To find molar mass of CO₂, we want to add up the molar mass of carbon and oxygen. Remember, there are 2 Oxygens so we need to mulitply that by 2.
12.011+2(15.999)=44.009 g/mol
Now that we have molar mass, we can convert 382.5 g to mols.

There are about 8.691 mols of CO₂.
Answer: 1) A solid product of a chemical reaction that is in aqueous form.
MgCl2(s) + H2O(l) → MgO(s) + 2 HCl(g)
Using the standard enthalpies of formation given in the source below:
(−601.24 kJ) + (2 x −92.30 kJ) − (−641.8 kJ) − (−285.8 kJ) = +141.76 kJ
So:
MgCl2(s) + H2O(l) → MgO(s) + 2 HCl(g), ΔH = +141.76 kJ
Answer:
Explanation:
-The Atomic Radius of an element is the distance between the center of an atom
-nucleus and its outermost, or valence electrons. ... These changes are caused by the interaction between the positive charge of the protons
- nucleus and the negative charge of all the atom's electrons.