Answer with Explanation:
We are given that
Constant speed of Jane=12.6 m/s
a.When Fred can throw the ball 30 m/s
We have to find the angle relative to the horizontal when he throw the ball in order for Sue to see the ball travel vertically upward.
Let
be the angle .
Therefore,



b.We have to find the height to which ball reach.



Die meisten von ihnen haben die Möglichkeit zu den Anderen zu kommen oder die Möglichkeit für die Zeit der Arbeit mit dem Auto und der Wohnung zu
Answer:
v = 98.75 km/h
Explanation:
Given,
The distance driver travels towards the east, d₁ = 135 km
The time period of the travel, t₁ = 1.5 h
The halting time, tₓ = 46 minutes
The distance driver travels towards the east, d₂ = 215 km
The time period of the travel, t₁ = 2 h
The average speed of the vehicle before stopping
v₁ = d₁/t₁
= 135/1.5
= 90 km/h
The average speed of vehicle after stopping
v₂ = d₂/t₂
= 215/2
= 107.5 km/h
The total average velocity of the driver
v = (v₁ +v₂) /2
= (90 + 107.5)/2
= 98.75 km/h
Hence, the average velocity of the driver, v = 98.75 km/h
Answer:
the speed of the waves is 150 cm/s
Explanation:
Given;
frequency of the wave, f = 10 Hz = 10
distance between 4 nodes, L = 15.0 cm
The wavelength (λ) of the wave is calculated as follows;
Node to Node = λ/2
L = 2(Node to Node) = (4 Nodes) = 2 (λ/2) = λ
Thus, λ = L = 15.0 cm
The speed (v) of the wave is calculated as follows;
v = fλ
v = 10 Hz x 15.0 cm
v = 150 cm/s
Therefore, the speed of the waves is 150 cm/s
You would know a decomposition reaction occurred if the reactants separated. For example from AB → A+B.
Now if you look at your options only 1 works out for that equation. Letter A.
From the compound K2CO3 it split up to K2O +CO2
It cannot be letter B because synthesis/combination occurred. The same goes for letter C. Letter D, single displacement occurred.
Again, the answer is A.