Answer:the pressure depends on gas and it will be half as much underwater
Explanation:
Water pressure increases with the depth of the water. This is because the weight of the column of water above the object increases. But a large, shallow pond may have more water in it than a small, deep pond.
This is due to an increase in hydrostatic pressure, the force per unit area exerted by a liquid on an object. The deeper you go under the sea, the greater the pressure of the water pushing down on you. For every 33 feet (10.06 meters) you go down, the pressure increases by one atmosphere .
Answer:
(1) Sure, the frequency is 1000 Hz.
Explanation:
Frequency = wave speed ÷ wave distance
wave speed = 100 m/s
wave distance = 10 cm = 10/100 = 0.1 m
Frequency = 100 ÷ 0.1 = 1000 Hz
Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :
Wavelength for f = 45 Hz is,
Wavelength for f = 375 Hz is,
So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Answer:
48.6°
Explanation:
The forward force, F equals the component of the weight along the slope.
So mgsinθ = ma where a = acceleration and θ = angle between the slope and the horizontal.
So a = gsinθ
Since we are given that a = 75%g = 0.75g,
0.75g = gsinθ
sinθ = 0.75
θ = sin⁻¹(0.75)
= 48.6°