1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fudgin [204]
3 years ago
5

(a) Find the energy of the ground state (n = 1) and the first two excited states of an electron in a one-dimensional box of leng

th L = 1.0 10-15 m = 1.00 fm (about the diameter of an atomic nucleus). ground state MeV first excited state MeV second excited state GeV Make an energy-level diagram for the system. (Do this on paper. Your instructor may ask you to turn in this work.) (b) Calculate the wavelength of electromagnetic radiation emitted when the electron makes a transition from n = 2 to n = 1. fm (c) Calculate the wavelength of electromagnetic radiation emitted when the electron makes a transition from n = 3 to n = 2. fm (d) Calculate the wavelength of electromagnetic radiation emitted when the electron makes a transition from n = 3 to n = 1. fm
Physics
1 answer:
const2013 [10]3 years ago
7 0

(a) 3.77\cdot 10^5 MeV, 1.51\cdot 10^6 MeV, 3.39\cdot 10^3 GeV

The energy levels of an electron in a box are given by

E_n = \frac{n^2 h^2}{8mL^2}

where

n is the energy level

h=6.63\cdot 10^{-34}Js is the Planck constant

m=9.11\cdot 10^{-31}kg is the mass of the electron

L=1.0\cdot 10^{-15} m is the size of the box

Substituting n=1, we find the energy of the ground state:

E_1 = \frac{1^2 (6.63\cdot 10^{-34}^2}{8(9.11\cdot 10^{-31}(1.0\cdot 10^{-15})^2}=6.03\cdot 10^{-8}J

Converting into MeV,

E_1 = \frac{6.03\cdot 10^{-8} J}{1.6\cdot 10^{-19} J/eV}\cdot 10^{-6} MeV/eV =3.77\cdot 10^5 MeV

Substituting n=2, we find the energy of the first excited state:

E_2 = \frac{2^2 (6.63\cdot 10^{-34}^2}{8(9.11\cdot 10^{-31}(1.0\cdot 10^{-15})^2}=2.41\cdot 10^{-7}J

Converting into MeV,

E_2 = \frac{2.41\cdot 10^{-7} J}{1.6\cdot 10^{-19} J/eV}\cdot 10^{-6} MeV/eV =1.51\cdot 10^6 MeV

Substituting n=3, we find the energy of the second excited state:

E_3 = \frac{3^2 (6.63\cdot 10^{-34}^2}{8(9.11\cdot 10^{-31}(1.0\cdot 10^{-15})^2}=5.43\cdot 10^{-7}J

Converting into GeV,

E_3 = \frac{5.43\cdot 10^{-7} J}{1.6\cdot 10^{-19} J/eV}\cdot 10^{-9} GeV/eV =3.39\cdot 10^3 GeV

(b) 1.10 \cdot 10^{-18} m

The energy of the emitted radiation is equal to the energy difference between the two levels, so:

E=E_2 - E_1 = 2.41\cdot 10^{-7}J - 6.03\cdot 10^{-8} J=1.81\cdot 10^{-7} J

And the energy of the electromagnetic radiation is

E=\frac{hc}{\lambda}

where c is the speed of light; so, re-arranging the formula, we find the wavelength:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{1.81\cdot 10^{-7}J}=1.10 \cdot 10^{-18} m

(c) 6.59 \cdot 10^{-19} m

The energy of the emitted radiation is equal to the energy difference between the two levels, so:

E=E_3 - E_2 = 5.43\cdot 10^{-7} J - 2.41\cdot 10^{-7}J =3.02\cdot 10^{-7} J

Using the same formula as before, we find the corresponding wavelength:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{3.02\cdot 10^{-7}J}=6.59 \cdot 10^{-19} m

(d) 4.12 \cdot 10^{-19} m

The energy of the emitted radiation is equal to the energy difference between the two levels, so:

E=E_3 - E_1 = 5.43\cdot 10^{-7} J - 6.03\cdot 10^{-8}J =4.83\cdot 10^{-7} J

Using the same formula as before, we find:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{4.83\cdot 10^{-7}J}=4.12 \cdot 10^{-19} m

You might be interested in
What is the amount of a certain isotope that occurs in a natural sample of an element
amid [387]
I believe it is the percent abundance. Isotopes are atoms of the same element with similar atomic number but different mass number. Natural abundance is the abundance of isotopes of a chemical element as naturally found on the planet. The relative atomic mass of these isotopes is the atomic weight listed for the element in the periodic table. 
7 0
3 years ago
Read 2 more answers
How is static electricity different from electric current
Sindrei [870]

Answer:

1. Static electricity is caused by the build up of electrical charges on the surface of objects, while current electricity is a phenomenon from the flow of electrons along a conductor.

Explanation:

8 0
3 years ago
How to do this problem
marusya05 [52]
The answer I'm pretty sure is 3
4 0
3 years ago
Read 2 more answers
A student made the following observations about a squirrel’s movements:
dalvyx [7]

The correct option is <u>D</u>.

Qualitative observations are observations that are made using our senses of sight, hearing, smell, taste and feel. These observations do not involve numbers or measurements of any kind.

The student's observations regarding the squirrel as is mentioned in options A, B and C involve measurements. Therefore these are not qualitative observations.

Option D, however, is made on the basis of sight, where the student observes the squirrel moving in a zigzag manner.

Therefore, of all the three observations, the student's observation that the squirrel ran in a zigzag pattern is the qualitative observation.

4 0
3 years ago
A rigid container holds 0.30g of hydrogen gas.
Strike441 [17]

Answer:

Part A:    \mathbf{Q =94 \ J} to two significant figures

Part B:    \mathbf{Q =160  \ J} to two significant figures

Part C:    \mathbf{Q =220  \ J} to two significant figures

Explanation:

Given that :

mass of the hydrogen = 0.30 g

the molar mass of hydrogen gas molecule = 2 g/mol

we all know that:

number of moles = mass/molar mass

number of moles = 0.30 g /2 g/mol

number of moles = 0.15 mol

For low temperature between the range of 50 K to 100 K, the specific heat at constant volume for a diatomic gas molecule = C_v=\dfrac{3}{2}R

For Part A:

Q = mC_v\Delta T

Q= 0.15 \ mol (\dfrac{3}{2})(8.314 \ J/mole.K )(100-50)K

Q= 0.15 \times (\dfrac{3}{2}) \times (8.314 \ J )\times (50)

Q=93.5325 \ J

\mathbf{Q =94 \ J} to two significant figures

Part B. For hot temperature, C_v=\dfrac{5}{2}R

Q = mC_v\Delta T

Q= 0.15 \ mol (\dfrac{5}{2})(8.314 \ J/mole.K )(300-250)K

Q= 0.15 \times (\dfrac{5}{2}) \times (8.314 \ J )\times (50)

Q=155.8875 \ J

\mathbf{Q =160  \ J} to two significant figures

Part C. For an extremely hot temperature, C_v=\dfrac{7}{2}R

Q = mC_v\Delta T

Q= 0.15 \ mol (\dfrac{7}{2})(8.314 \ J/mole.K )(2300-2250)K

Q= 0.15 \times (\dfrac{7}{2}) \times (8.314 \ J )\times (50)

Q=218.2425 \ J

\mathbf{Q =220  \ J} to two significant figures

6 0
3 years ago
Other questions:
  • If 3,600 J of work is done in 3.0 s, what is the power?
    10·2 answers
  • Will you chech and finish these for me, because I am stumped with them.
    5·1 answer
  • Atoms can bond together in several different ways. Name three types of chemical bonding. Explain what happens to electrons in ea
    9·1 answer
  • What does it mean if an experiment is replicable? Why is it important that experiments be replicable? (Site 1)
    15·1 answer
  • What is diffrence between ammeter and voltmeter
    9·1 answer
  • what is formed when two or more substances are so evenly mixed that you can't see the different parts
    11·1 answer
  • Serving at a speed of 164 km/h, a tennis player hits the ball at a height of 2.23 m and an angle θ below the horizontal. The ser
    5·1 answer
  • Why are force fields used to describe magnetic force? A. Magnetic force acts between two objects that are not touching. B. Magne
    5·1 answer
  • Which of the following best describes the velocity of an object?
    7·2 answers
  • A body staring for rest acquries a velocity of 10ms in 5 seconds calculate (a) the accleration(b) the distance covered by the bo
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!