1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fudgin [204]
2 years ago
5

(a) Find the energy of the ground state (n = 1) and the first two excited states of an electron in a one-dimensional box of leng

th L = 1.0 10-15 m = 1.00 fm (about the diameter of an atomic nucleus). ground state MeV first excited state MeV second excited state GeV Make an energy-level diagram for the system. (Do this on paper. Your instructor may ask you to turn in this work.) (b) Calculate the wavelength of electromagnetic radiation emitted when the electron makes a transition from n = 2 to n = 1. fm (c) Calculate the wavelength of electromagnetic radiation emitted when the electron makes a transition from n = 3 to n = 2. fm (d) Calculate the wavelength of electromagnetic radiation emitted when the electron makes a transition from n = 3 to n = 1. fm
Physics
1 answer:
const2013 [10]2 years ago
7 0

(a) 3.77\cdot 10^5 MeV, 1.51\cdot 10^6 MeV, 3.39\cdot 10^3 GeV

The energy levels of an electron in a box are given by

E_n = \frac{n^2 h^2}{8mL^2}

where

n is the energy level

h=6.63\cdot 10^{-34}Js is the Planck constant

m=9.11\cdot 10^{-31}kg is the mass of the electron

L=1.0\cdot 10^{-15} m is the size of the box

Substituting n=1, we find the energy of the ground state:

E_1 = \frac{1^2 (6.63\cdot 10^{-34}^2}{8(9.11\cdot 10^{-31}(1.0\cdot 10^{-15})^2}=6.03\cdot 10^{-8}J

Converting into MeV,

E_1 = \frac{6.03\cdot 10^{-8} J}{1.6\cdot 10^{-19} J/eV}\cdot 10^{-6} MeV/eV =3.77\cdot 10^5 MeV

Substituting n=2, we find the energy of the first excited state:

E_2 = \frac{2^2 (6.63\cdot 10^{-34}^2}{8(9.11\cdot 10^{-31}(1.0\cdot 10^{-15})^2}=2.41\cdot 10^{-7}J

Converting into MeV,

E_2 = \frac{2.41\cdot 10^{-7} J}{1.6\cdot 10^{-19} J/eV}\cdot 10^{-6} MeV/eV =1.51\cdot 10^6 MeV

Substituting n=3, we find the energy of the second excited state:

E_3 = \frac{3^2 (6.63\cdot 10^{-34}^2}{8(9.11\cdot 10^{-31}(1.0\cdot 10^{-15})^2}=5.43\cdot 10^{-7}J

Converting into GeV,

E_3 = \frac{5.43\cdot 10^{-7} J}{1.6\cdot 10^{-19} J/eV}\cdot 10^{-9} GeV/eV =3.39\cdot 10^3 GeV

(b) 1.10 \cdot 10^{-18} m

The energy of the emitted radiation is equal to the energy difference between the two levels, so:

E=E_2 - E_1 = 2.41\cdot 10^{-7}J - 6.03\cdot 10^{-8} J=1.81\cdot 10^{-7} J

And the energy of the electromagnetic radiation is

E=\frac{hc}{\lambda}

where c is the speed of light; so, re-arranging the formula, we find the wavelength:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{1.81\cdot 10^{-7}J}=1.10 \cdot 10^{-18} m

(c) 6.59 \cdot 10^{-19} m

The energy of the emitted radiation is equal to the energy difference between the two levels, so:

E=E_3 - E_2 = 5.43\cdot 10^{-7} J - 2.41\cdot 10^{-7}J =3.02\cdot 10^{-7} J

Using the same formula as before, we find the corresponding wavelength:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{3.02\cdot 10^{-7}J}=6.59 \cdot 10^{-19} m

(d) 4.12 \cdot 10^{-19} m

The energy of the emitted radiation is equal to the energy difference between the two levels, so:

E=E_3 - E_1 = 5.43\cdot 10^{-7} J - 6.03\cdot 10^{-8}J =4.83\cdot 10^{-7} J

Using the same formula as before, we find:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{4.83\cdot 10^{-7}J}=4.12 \cdot 10^{-19} m

You might be interested in
A sinusoidal wave of angular frequency 1,203 rad/s and amplitude 3.1 mm is sent along a cord with linear density 3.9 g/m and ten
kobusy [5.1K]

Answer:

18.7842493212 W

Explanation:

T = Tension = 1871 N

\mu = Linear density = 3.9 g/m

y = Amplitude = 3.1 mm

\omega = Angular frequency = 1203 rad/s

Average rate of energy transfer is given by

P=\dfrac{1}{2}\sqrt{T\mu}\omega^2y^2\\\Rightarrow P=\dfrac{1}{2}\sqrt{1871\times 3.9\times 10^{-3}}\times 1203^2\times (3.1\times 10^{-3})^2\\\Rightarrow P=18.7842493212\ W

The average rate at which energy is transported by the wave to the opposite end of the cord is 18.7842493212 W

7 0
3 years ago
Which type of force pulls objects toward one another
Klio2033 [76]
Gravity ALWAYS does that, and electrostatic force does it when two objects have opposite charges.
4 0
2 years ago
Read 2 more answers
Explain how you should walk
hammer [34]

Answer:

A step by step to walk

Explanation:

One- Make sure your shoes are tied so that you dont trip

Two- Make sure your way is a cleared path so you dont fall or even hurt yourself

three- use both set of lets to go in any direction you want.

Four- when walking make sure to try and keep a steedy pace so that both set of legs are going up and down but in harmony

3 0
3 years ago
Read 2 more answers
When exposed to a radioactive source which emits 1.2-MeV gamma-rays, a particular material is found to have a half-value thickne
iren2701 [21]

Answer:E

Explanation:

It is given that Energy of gamma ray is E=1.2 Mev

Shielding effect can be measured by measuring the fraction of gamma rays blocked by shield. If certain thickness will able to block half the radiation then to block 75% radiation we need to add same amount of thickness in order to block the remaining radiation.

i.e. \frac{E}{2} fraction is blocked by 10 cm thickness

then remaining radiation is \frac{E}{2}

another 10 cm thickness will block the remaining half radiation i.e. \frac{1}{2}\times \frac{E}{2}=\frac{E}{4}

so total 75 % radiation will be blocked

4 0
3 years ago
Chlorine contains 17 protons and 19 neutrons, and 18 electrons. What is the net charge of the ion?
Ymorist [56]

Answer:

Net Charge is -1.6 x 10 (to the negative 19th power) C. l

Explanation:

4 0
2 years ago
Other questions:
  • What quantity is multiplied by the hydraulic lift system of a dump truck?
    15·2 answers
  • Will the current increase or decrease if you increase voltage?
    13·1 answer
  • What happens when the temperature of an object decreases
    13·1 answer
  • A segment of wire carries a current of 25 A along the x axis from x = −2.0 m to x = 0 and then along the z axis from z = 0 to z
    15·1 answer
  • Please help
    15·2 answers
  • What force is the total force felt by an object?
    13·2 answers
  • Hey guys, I don't understand this. I am unable to find the answer, any help?
    8·2 answers
  • "1. Which properties make a metal a good material to use for electrical wires? (1 poi
    7·1 answer
  • What is the correct answer?
    5·2 answers
  • What is the speed of rocket that travels 9km in 10 seconds​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!