1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fudgin [204]
3 years ago
5

(a) Find the energy of the ground state (n = 1) and the first two excited states of an electron in a one-dimensional box of leng

th L = 1.0 10-15 m = 1.00 fm (about the diameter of an atomic nucleus). ground state MeV first excited state MeV second excited state GeV Make an energy-level diagram for the system. (Do this on paper. Your instructor may ask you to turn in this work.) (b) Calculate the wavelength of electromagnetic radiation emitted when the electron makes a transition from n = 2 to n = 1. fm (c) Calculate the wavelength of electromagnetic radiation emitted when the electron makes a transition from n = 3 to n = 2. fm (d) Calculate the wavelength of electromagnetic radiation emitted when the electron makes a transition from n = 3 to n = 1. fm
Physics
1 answer:
const2013 [10]3 years ago
7 0

(a) 3.77\cdot 10^5 MeV, 1.51\cdot 10^6 MeV, 3.39\cdot 10^3 GeV

The energy levels of an electron in a box are given by

E_n = \frac{n^2 h^2}{8mL^2}

where

n is the energy level

h=6.63\cdot 10^{-34}Js is the Planck constant

m=9.11\cdot 10^{-31}kg is the mass of the electron

L=1.0\cdot 10^{-15} m is the size of the box

Substituting n=1, we find the energy of the ground state:

E_1 = \frac{1^2 (6.63\cdot 10^{-34}^2}{8(9.11\cdot 10^{-31}(1.0\cdot 10^{-15})^2}=6.03\cdot 10^{-8}J

Converting into MeV,

E_1 = \frac{6.03\cdot 10^{-8} J}{1.6\cdot 10^{-19} J/eV}\cdot 10^{-6} MeV/eV =3.77\cdot 10^5 MeV

Substituting n=2, we find the energy of the first excited state:

E_2 = \frac{2^2 (6.63\cdot 10^{-34}^2}{8(9.11\cdot 10^{-31}(1.0\cdot 10^{-15})^2}=2.41\cdot 10^{-7}J

Converting into MeV,

E_2 = \frac{2.41\cdot 10^{-7} J}{1.6\cdot 10^{-19} J/eV}\cdot 10^{-6} MeV/eV =1.51\cdot 10^6 MeV

Substituting n=3, we find the energy of the second excited state:

E_3 = \frac{3^2 (6.63\cdot 10^{-34}^2}{8(9.11\cdot 10^{-31}(1.0\cdot 10^{-15})^2}=5.43\cdot 10^{-7}J

Converting into GeV,

E_3 = \frac{5.43\cdot 10^{-7} J}{1.6\cdot 10^{-19} J/eV}\cdot 10^{-9} GeV/eV =3.39\cdot 10^3 GeV

(b) 1.10 \cdot 10^{-18} m

The energy of the emitted radiation is equal to the energy difference between the two levels, so:

E=E_2 - E_1 = 2.41\cdot 10^{-7}J - 6.03\cdot 10^{-8} J=1.81\cdot 10^{-7} J

And the energy of the electromagnetic radiation is

E=\frac{hc}{\lambda}

where c is the speed of light; so, re-arranging the formula, we find the wavelength:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{1.81\cdot 10^{-7}J}=1.10 \cdot 10^{-18} m

(c) 6.59 \cdot 10^{-19} m

The energy of the emitted radiation is equal to the energy difference between the two levels, so:

E=E_3 - E_2 = 5.43\cdot 10^{-7} J - 2.41\cdot 10^{-7}J =3.02\cdot 10^{-7} J

Using the same formula as before, we find the corresponding wavelength:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{3.02\cdot 10^{-7}J}=6.59 \cdot 10^{-19} m

(d) 4.12 \cdot 10^{-19} m

The energy of the emitted radiation is equal to the energy difference between the two levels, so:

E=E_3 - E_1 = 5.43\cdot 10^{-7} J - 6.03\cdot 10^{-8}J =4.83\cdot 10^{-7} J

Using the same formula as before, we find:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{4.83\cdot 10^{-7}J}=4.12 \cdot 10^{-19} m

You might be interested in
A typical current in a lightning bolt is 103 a. estimate the magnetic field 9 m from the bolt (in t). (enter the magnitude.)
kifflom [539]

The magnetic field is

2.288 \times 10 {}^{ - 6} T

what is magnetic field?

Magnetic field is defined as the relationship between the permittivity of free space,the magnitude of electric current,and distance.

Here is the formula,

B =  \frac{µ0l }{2π R}

here,

B= magnitude of the magnetic field

l= magnitude of electric current

R=distance

µ0=permittivity of free space

Now,using above formula we can calculate the magnetic field

B =  \frac{µ0l }{2π R}

\frac{4\pi \times 10 {}^{ - 7}. \frac{m}{a}  \times 103 }{2\pi \times (9m)}

= 2.288 \times 10 {}^{ - 6} T

Thus,the magnetic field is

= 2.288 \times 10 {}^{ - 6} T

learn more about magnetic field from here: brainly.com/question/28326849

#SPJ4

4 0
2 years ago
A car moves at speed v across a bridge made in the shape of a circular arc of radius r. (a) Find an expression for the normal fo
inna [77]

Answer:

(a) FN = m (g - \frac{v^{2} }{r})

(b) vmin = 17.146 m/s

Explanation:

The radius of the arc is

r = 30m

The normal force acting on the car form the highest point is

FN = m (g - \frac{v^{2} }{r})

If the normal force become 0 we have

m (g - \frac{v^{2} }{r}) = 0

or

g - \frac{v^{2} }{r} = 0

This way, when FN = 0, then v = vmin, so

g - \frac{vmin^{2} }{r} = 0

vmin = \sqrt[.]{g*r} = \sqrt[.]{9.8 m/s^{2} * 30m } = 17.146 m/s

4 0
3 years ago
Which statement best describes the type of magnetism generated by attaching a wire to a battery and wrapping the wire around an
Mazyrski [523]
It only occurs when there is an electric current
4 0
3 years ago
True or False<br><br> The greater the speed of an object, the less kinetic energy it possesses.
Anettt [7]
That is true because if the object is moving at Forceful speeds than it will lose more of its kinetic energy
3 0
3 years ago
Read 2 more answers
13. Describe the molecules of a solid in terms of kinetic energy.
Y_Kistochka [10]
The kinetic molecular theory of matter states that: ... Molecules in the solid phase have the least amount of energy, while gas particles have the greatest amount of energy. The temperature of a substance is a measure of the average kinetic energy of the particles.
3 0
2 years ago
Other questions:
  • The 'pleasure centers' are located in the brain structure known as the: (2 points)
    6·1 answer
  • The solubility of a gas is .55 g/l at 8.0 atm pressure. what will be the solubility of the gas at 5.0 atm partial pressure?
    14·1 answer
  • When a hot metal cylinder is dropped into a sample of water, the water molecules _____________________ to reach the final temper
    10·2 answers
  • Do these examples represent unbalanced or balanced forces?
    11·1 answer
  • Heavy ions, such as alpha particles, lose kinetic energy as they travel through matter. Consider equation 31.1 or 31.2. Where do
    10·1 answer
  • Assume that charge −q is placed on the top plate, and +q is placed on the bottom plate. What is the magnitude of the electric fi
    12·1 answer
  • In transverse waves, the medium moves perpendicular to the direction of energy transport? True or false?
    5·1 answer
  • A person with a near point of 85 cm, but excellent distant vision, normally wears corrective glasses. But he loses them while tr
    15·1 answer
  • Physics 4
    12·1 answer
  • The following table lists the speed of sound in various materials. Use this table to answer the question.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!