La velocidad vertical del tanque después de caer 10 m es 14 m/seg .
La velocidad vertical del tanque se calcula mediante la aplicación de la fórmula de velocidad , la componente vertical Vfy, del movimiento horizontal como se muestra a continuación :
Vfy=?
h = 10 m
Fórmula de Velocidad vertical Vfy:
Vfy² = 2*g*h
Vfy= √(2*9.8m/seg2* 10m )
Vfy= 14 m/seg
By Newton's second law, the net vertical force acting on the object is 0, so that
<em>n</em> - <em>w</em> = 0
where <em>n</em> = magnitude of the normal force of the surface pushing up on the object, and <em>w</em> = weight of the object. Hence <em>n</em> = <em>w</em> = <em>mg</em> = 196 N, where <em>m</em> = 20 kg and <em>g</em> = 9.80 m/s².
The force of static friction exerts up to 80 N on the object, since that's the minimum required force needed to get it moving, which means the coefficient of <u>static</u> friction <em>µ</em> is such that
80 N = <em>µ</em> (196 N) → <em>µ</em> = (80 N)/(196 N) ≈ 0.408
Moving at constant speed, there is a kinetic friction force of 40 N opposing the object's motion, so that the coefficient of <u>kinetic</u> friction <em>ν</em> is
40 N = <em>ν</em> (196 N) → <em>ν</em> = (40 N)/(196 N) ≈ 0.204
And so the closest answer is C.
(Note: <em>µ</em> and <em>ν</em> are the Greek letters mu and nu)
Answer: a= 37m
Explanation: V= 15 m/s (Velocity) t= 0.41s (time) formula: a= v/t
15 m/s / 0.41 (15 divided by 0.41) = 36.583m
There are 2 significant digits, 36, you look at the third digit, either round up or down in this case up to 36. a= 37m
The AREA of the shaded region is the moving object's displacement.