Answer:
(a) 7.72×10⁵ J
(b) 4000 J
(c) 1.82×10⁻¹⁶ J
Explanation:
Kinetic Energy: This can be defined energy of a body due to its motion. The expression for kinetic energy is given as,
Ek = 1/2mv²................... Equation 1
Where Ek = Kinetic energy, m = mass, v = velocity
(a)
For a moving automobile,
Ek = 1/2mv².
Given: m = 2.0×10³ kg, v = 100 km/h = 100(1000/3600) m/s = 27.78 m/s
Substitute into equation 1
Ek = 1/2(2.0×10³)(27.78²)
Ek = 7.72×10⁵ J
(b)
For a sprinting runner,
Given: m = 80 kg, v = 10 m/s
Substitute into equation 1 above,
Ek = 1/2(80)(10²)
Ek = 40(100)
Ek = 4000 J
(c)
For a moving electron,
Given: m = 9.10×10⁻³¹ kg, v = 2.0×10⁷ m/s
Substitute into equation 1 above,
Ek = 1/2(9.10×10⁻³¹)(2.0×10⁷)²
Ek = 1.82×10⁻¹⁶ J
The area of the Earth (Ae) that is irradiated by is given by:
Ae = 4πRe^2, where Re = Distance from Sun to Earth
Substituting;
Ae = 4π*(1.5*10^8*1000)^2 = 2.827*10^23 m^2
On the Earth, insolation (We) = Psun/Ae
Therefore,
Psun (Rate at which sun emits energy) = We*Ae = 1.4*2.827*10^23 = 3.958*10^23 kW = 3.958*10^26 W
1)
p = 2.4 * 10^5 Pa
T = 18° C + 273.15 = 291.15 k
r = 0.25 m => V = [4/3]π(r^3) = [4/3]π(0.25m)^3 = 0.06545 m^3 = 65.45 L
Use ideal gas equation: pV = nRT => n = pV / RT = [2.4*10^5 Pa * 0.06545 m^3] / [8.31 J/k*mol * 291.15k] = 6.492 mol
Avogadro number = 1 mol = 6.022 * 10^23 atoms
Number of atoms = 6.492 mol * 6.022 *10^23 atom/mol = 39.097 * 10^23 atoms = 3.91 * 10^24 atoms
2) Double atoms => double volume
V2 / V1 = r2 ^3 / r1/3
2 = r2 ^3 / r1 ^3 => r2 ^3 = 2* r1 ^3
r2 = [∛2]r1
The factor is ∛2
Yes because as more water leaks in the more water it will displace
Answer:
The pressure of the gas will increase
Explanation:
When gas is put into a container, for example, a balloon, the gas expands to fill the space it can occupy. Since gas is not a solid or a liquid, its particles are all over the place - they are constantly moving and vibrating. As such, when too much gas is blown into a balloon, it will pop. So, when the volume of the container decreases, the pressure of the gas will increase the smaller it gets. Vice versa, the greater the space, the less pressure that will be present in the container.