An electromagnet is a type of magnet in which the magnetic field is produced using the current. The simplest form of an electromagnet is a wire wrapped around in a coil.
The strength of magnetic field of such magnet is given with this equation:

Where N is the number of loops in the coil, I is the strength of the current flowing through the coil, L is the length of the coil, and

is <span>permeability of the electromagnet core material.
From this equation, we can see that increasing both the current and number of loops will increase the strength of the magnet.
Both BLANKS should be
Increase. When you use the additional battery you will have more voltage and more voltage means more electricity.</span>
Explanation:
if the elevator is moving upward with the constant speed the spring scale will read 18 N which is the mass of each of the two blocks attached by separate springs to the scale at opposite ends.
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
If the boat is floating, then it's just sitting there, and not accelerating
up or down. That means the vertical forces on it must be balanced.
So if its weight (acting downward) is 100 newtons, then the buoyant
force on it (acting upward) must also be 100 newtons.