Answer:
3.48 seconds
Explanation:
At maximum height Vf=0 m/s
Vf= Vi - g*t
⇒g*t= Vi
⇒t= Vi/g
⇒t= 112/32.17 sec
⇒ t= 3.48 s
so the projectile will achieve its maximum height in 3.48 seconds.
Thus, more than 30 J of potential energy can be loosed by the ball. Thus, the gravitational potential energy of the ball is more than 30 J.
If there is no air resistance, the ball's potential energy is entirely transformed into kinetic energy. When air resistance is taken into account, a portion of the potential energy is used to overcome it. Thus, AU > AKE. In the current scenario, a ball gains 30 J of kinetic energy while falling and is treated as encountering air resistance. The energy that an object retains due to its position in relation to other objects, internal stresses, electric charge, or other factors is known as potential energy in physics. The potential energy will be transformed into kinetic energy if the stones fall. High on the tree, branches have the potential to fall, which gives them energy. Chemical potential energy exists in the food we eat.
Learn more about potential energy here:
brainly.com/question/24284560
#SPJ4
Answer:
Rubber or plastic covers are bad conductors of electricity. So they do not allow the electric current to pass through it.
Explanation:
Rubber and plastic are bad conductors of electricity, therefore when handling a tool with a rubber handle, the electricity will not pass through it.