If the objects comprise a gas, then the first object contains more
thermal energy (heat) than the second object.
If the objects are solid, then you can't draw any conclusion unless
both objects have the same total mass. If that's the case, then the
first object must be moving faster than the second one.
Answer:
the magnitude of the velocity of one particle relative to the other is 0.9988c
Explanation:
Given the data in the question;
Velocities of the two particles = 0.9520c
Using Lorentz transformation
Let relative velocity be W, so
v
= ( u + v ) / ( 1 + ( uv / c²) )
since each particle travels with the same speed,
u = v
so
v
= ( u + u ) / ( 1 + ( u×u / c²) )
v
= 2(0.9520c) / ( 1 + ( 0.9520c )² / c²) )
we substitute
v
= 1.904c / ( 1 + ( (0.906304 × c² ) / c²) )
v
= 1.904c / ( 1 + 0.906304 )
v
= 1.904c / 1.906304
v
= 0.9988c
Therefore, the magnitude of the velocity of one particle relative to the other is 0.9988c
Answer:
Moons’ gravitational strength = weight of astronaut on the moon / mass of astronaut.
= 150 / 90 = 1.67 Nkg-1
Explanation:
Answer:
I feel that people hurt the land and are destroying. I think they aren't using the land for the right reasons.
12 protons in the nucleus