1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balandron [24]
3 years ago
7

Geologists have divided Earth's history into time units, which are regularly based on

Physics
1 answer:
Arturiano [62]3 years ago
8 0
They are based on layers of rock the correspond to certain time periods, so my guess would be D.
You might be interested in
What is the best piece of advice you have ever received or given?
Afina-wow [57]

Answer:Your life is your responsibility.

Explanation:

4 0
3 years ago
Read 2 more answers
Type the correct answer in the box. Round your answer to the nearest whole number. Calculate the man’s mass. (Use PE = m × g × h
Blababa [14]

Answer:

56 kg

Explanation:

The change in potential energy of the man is given by:

\Delta U = mg \Delta h

where

m is the man's mass

g is the gravitational acceleration

\Delta h is the change in height of the man

In this problem, we have:

\Delta U=4620 J is the gain in potential energy

g = 9.8 m/s^2 is the gravitational acceleration

\Delta h=8.4 m is the change in height

Re-arranging the equation and substituting the numbers, we find the mass:

m=\frac{\Delta U}{g\Delta h}=\frac{4620 J}{(9.8 m/s^2)(8.4 m)}=56 kg

6 0
3 years ago
Read 2 more answers
A stuntman with a mass of 80.5 kg swings across a moat from a rope that is 11.5 m. At the bottom of the swing the stuntman's spe
goldenfox [79]

Answer:

  • No
  • 5.49 m/s

Explanation:

The net force required to accelerate the stuntman in a circular arc of radius 11.5 m will be ...

  F = mv²/r . . . . where this m is the mass being accelerated, v is the tangential velocity, and r is the radius.

Here, the net force needs to be ...

  F = (80.5 kg)(8.45 m/s)²/(11.5 m) . . . . . where this m is meters

  ≈ 499.8175 kg·m/s² = 499.8 N

Gravity exerts a force on the stuntman of ...

  F = mg = (80.5 kg)(9.8 m/s²) = 788.9 kg·m/s² = 788.9 N

Then the tension required in the rope/vine is ...

  499.8 N+788.9 N= 1288.7 N

This is more than the capacity of the rope, so we do not expect the stuntman to make it across the moat.

_____

The allowed net force for centripetal acceleration is ...

  1000 N -788.9 N = 211.1 N

Then the allowed velocity is ...

  211.1 = 80.5v²/11.5

  30.16 = v² . . . .  multiply by 11.5/80.5

  5.49 = v . . . . . . take the square root

The maximum speed the stuntman can have is 5.49 m/s.

_____

<em>Comment on crossing the moat</em>

The kinetic energy at the bottom of the swing translates to potential energy at the end of the swing. At the lower speed, the stuntman cannot rise as high, so will traverse a shorter arc. At 8.45 m/s, the moat could be about 16.8 m wide; at 5.49 m/s, it can only be about 11.5 m wide.

5 0
2 years ago
Two airplanes leave an airport at the same time. The velocity of the first airplane is 730 m/h at a heading of 65.3 ◦ . The velo
yanalaym [24]

Answer:

Plane will 741.6959 m apart after 1.7 hour                    

Explanation:

We have given time = 1.7 hr

So if we draw the vectors of a 2d graph we see that the difference in angles is   = 102^{\circ}-65.3^{\circ}=36.7^{\circ}

Speed of first plane  = 730 m/h

So distance traveled by first plane = 730×1.7 = 1241 m

Speed of second plane = 590 m/hr

So distance traveled by second plane = 590×1.7 = 1003 m

We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 58.6.

Using the law of cosine, r^2 representing the distance between the planes, we see that:

r^2=1241^2+1003^2-2\times 1003\times 1241cos(36.7)=550112.8295

r = 741.6959 m

3 0
3 years ago
A particle that carries a net charge of -41.8 μc is held in a region of constant, uniform electric field. the electric field vec
miss Akunina [59]
The total work done by the electric field on the charge is given by the scalar product between the electric force acting on the charge and the displacement of the charge:
W=F d cos \theta
where the force is F=qE, d=0.556 and \theta=55.2^{\circ}. Using the value of q and E given by the problem, we find
W=qEdcos\theta = 6.39\cdot10^{-5}J
3 0
3 years ago
Other questions:
  • hich best explains why no current is induced? The wire needs to be coiled less tightly. The wire needs to be straight, not coile
    7·1 answer
  • A car travels at a speed of 30 mph. how far does the car travel in 2 hours
    6·1 answer
  • A spring of force constant 285.0 N/m and unstretched length 0.230 m is stretched by two forces, pulling in opposite directions a
    14·1 answer
  • 1.)Describe an experience where you encountered a buoyant force and tell what it felt like.
    11·1 answer
  • What is the area of 12 1/2 and 17 1/5
    9·1 answer
  • What is Circular Motion?
    7·2 answers
  • A baseball with a mass of 142 grams is thrown across a field. It accelerates at a rate of 8 m/s^2. What is the force acting on t
    13·1 answer
  • A wave with low frequency would have relatively ________.
    8·2 answers
  • What is the station's orbital speed? the radius of earth is 6.37×106m, its mass is 5.98×1024kg.
    12·2 answers
  • What type of reaction in the diagram?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!