Question
What is the length of the pipe?
Answer:
(a) 0.52m
(b) f2=640 Hz and f3=960 Hz
(c) 352.9 Hz
Explanation:
For an open pipe, the velocity is given by

Making L the subject then

Where f is the frequency, L is the length, n is harmonic number, v is velocity
Substituting 1 for n, 320 Hz for f and 331 m/s for v then

(b)
The next two harmonics is given by
f2=2fi
f3=3fi
f2=3*320=640 Hz
f3=3*320=960 Hz
Alternatively,
and 

(c)
When v=367 m/s then

Answer:
A. it's the only answer that makes sense. if I'm wrong sorry
Answer:
Distance of 400m.
Explanation:
Use your kinematics equation to solve for distance (we can use kinematics b/c acceleration is constant).
d = (initial velocity x time) + 1/2 at^2
d = (20 x 10) + 1/2 (4) (10)^2
d = 200 + 200
d = 400 m
Answer:
just before landing the ground
Explanation:
Let the velocity of projection is u and the angle of projection is 30°.
Let T is the time of flight and R is the horizontal distance traveled. As there is no force acting in horizontal direction, so the horizontal velocity remains constant. Let the particle hits the ground with velocity v.
initial horizontal component of velocity, ux = u Cos 30
initial vertical component of velocity, uy = u Sin 30
Time of flight is given by

Final horizontal component of velocity, vx = ux = u Cos 30
Let vy is teh final vertical component of velocity.
Use first equation of motion
vy = uy - gT


vy = - u Sin 30
The magnitude of final velocity is given by


v = u
Thus, the velocity is same as it just reaches the ground.
The terminal speed of the marble is 0.588 m/s.
<h3>Calculation:</h3>
We know that,
F = mg ......(1)
where,
F = force
m = mass
g = acceleration due to gravity
Also,
v = F/k ......(2)
where,
v = terminal speed
k = proportionality constant
Substituting the value of F from equation (1) in equation (2)
v = mg/k .......(3)
Given,
m = 30 g = 0.030 kg
k = 0.500 kg/s
g = 9.8 m/s²
To find,
v =?
Put the values in equation (3)
v = mg/k
v = 0.03(9.8)/ 0.500
= 0.294/0.500
= 0.588 m/s
Hence, the terminal speed of the marble is 0.588 m/s.
Learn more about calculation of force here:
brainly.com/question/15562875
#SPJ4
.