Answer:
Because the value of K is huge.
Explanation:
The tautomer is a kind of isomer in which exist an equilibrium between a ketone and an enol, or between an aldehyde and an enol. So, in the enolization, the ketone is the reactant and the enol is the product.
The equilibrium reaction can be characterized by an equilibrium constant, which is the ratio of the concentration of the products by the concentration of the reactants.
Because the constant K is extremely large (10¹³) we can conclude that the concentration of the product will be greater than the concentration of the reactant, in the equilibrium. It means that the concentration of the enol will be greater.
So, the ketone is unstable and forms in a great amount the more stable product, the enol.
Answer:
Sulfur
Explanation:
You find the identity by looking at the number of protons. The number of protons never change for an element.
The average atomic mass of your mixture is 1.03 u
.
The average atomic mass of H is the weighted average of the atomic masses of its isotopes.
We multiply the atomic mass of each isotope by a number representing its relative importance (i.e., its % abundance).
Thus,
0.99 × 1.01 u = 0.998 u
0.002 × 2.01 u = 0.004 u
0.008 × 3.02 u = <u>0.024 u</u>
TOTAL = 1.03 u
The equilibrium constant is found by [product]/[reactant]
If the equilibrium constant is very small, such as 4.20 * 10^-31, then that means at equilibrium there is very little product and a lot of reactant.
And likewise, if there is a lot of product formed, and very little reactant, then the K value will be very large, which tells us that it is predominantly product.
At equilibrium, for any reaction, there will always be some reactant and some product present. There cannot be zero reactant or zero product. Also keep in mind that the equilibrium constant is dependent on temperature.
At equilibrium, for your reaction, it is predominantly reactants.
Answer:
The bottom layers of the rock could have formed before life occurred.
Explanation:
The bottom layers of the rock could have formed before life occurred because there is no fossil is present. If there is life at that time so the fossils are present at the bottom layer so the absence indicates that is no life present at that time. The bottom layer is older than the upper layer so that's why fossils of bacteria are found in the upper layer of the rock.
Answer:
C. Because bacterial fossils are found only in the upper layers, scientists can conclude that these bacteria evolved towards the end of Precambrian time.
There’s two different types of answers for this question so I just put both of them. Hope it helps : )