Different isotopes of the same element emit light at slightly different wavelengths, the minimum number of slits is mathematically given as
N=1820slits
<h3>What minimum number of slits is required to resolve these two wavelengths in second-order?</h3>
Generally, the equation for the wave is mathematically given as

Where the chromatic resolving power (R) is defined by

R = nN,
Therefore


and


In conclusion, the minimum number of slits is required to resolve these two wavelengths in second-order

Therefore

N=1820slits
Read more about slits
brainly.com/question/24305019
#SPJ1