The value of ΔG° at this temperature is -18034.18 J/mol
Calculation,
Given information
formation constant (Kf)= 1.7 × 
Universal gas constant (R) = 8.314 J/K• mol
Temperature = 25° C = 25 °C + 273 = 300 K
Formula used:
ΔG° = -RT㏑Kf
By putting the valur of R,T, Kf we get the value of ΔG°
ΔG° = - 8.314 J/K• mol×300K㏑ 1.7 × 
ΔG° = -2494.2㏑ 1.7 ×
= -18034.18 J/mol
So, change in standard Gibbs's free energy is -18034.18 J/mol
Learn about formation constant
brainly.com/question/14011682
#SPJ4
Hi there!
p = e-3
s = f-1
f = i-7
d = g-5
Hope that helps!
Brady
The answer is B.
You can rule C out because divergent means moving away. Rule out A because there is an oceanic and continental plate, not 2 of the same type. Rule D out for the same reason.
Answer:
n = 3 to n = 5
Explanation:
According to the Bohr's model of the atom, electrons in an atom absorb energy to move from a lower to higher energy level.
We must note that as we progress away from the nucleus, the energy levels of electrons become closer together. The energy difference between successive levels decreases and the wavelength of light associated with such transitions become longer.
Hence,the absorption of light of the longest wavelength corresponds to n = 3 to n = 5
.
This thermochemical equation needs to be balanced. Hence, option B is correct.
<h3>What is a balanced chemical equation?</h3>
A balanced equation contains the same number of each type of atom on both the left and right sides of the reaction arrow.
The balanced thermochemical equation is:
→ 
Hence, option B is correct.
Learn more about the balanced chemical equation here:
brainly.com/question/8062886
#SPJ1