Answer:
0.011 m.
Explanation:
Energy stored in the spring = Energy of the projectile.
1/2ke² = mgh ................ Equation 1
Where k = spring constant, e = extension or compression, m = mass of the projectile, g = acceleration due to gravity, h = height.
make e the subject of the equation
e = √(2mgh/k)............................. Equation 2
Given: k = 12 N/cm = 1200 N/m, m = 15 g = 0.015 kg, h = 5.0 m
Constant: g = 9.8 m/s²
Substitute into equation 2
e = √(2×0.015×5/1200)
e = √(0.15/1200)
e = √(0.000125)
e = 0.011 m.
The answer is the second option, or 1/10 the same momentum.
Answer: The correct answers are (A) and (C).
Explanation:
The expression from electrostatic force is as follows;

Here, F is the electrostatic force, k is constant, r is the distance between the charges and
are the charges.
The electrostatic force follows inverse square law. It is inversely proportional to the square of the distance between the charges. It is directly proportional to the product of the charges.
Like charges repel each other. There is a force of electrostatic repulsion between the like charges. Unlike charges attract each other. There is a force of electrostatic attraction between unlike charges.
The charges are induced on the neutral object when it is placed nearby the charged object without actually touching it.
Therefore, the true statements from the given options are as follows;
Like charges repel.
Unlike charges attract.
<span>The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation. The "electromagnetic spectrum" of an object is the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object. Hope this helped.</span>
<span>It is important to use the Système Internationale (SI) units to describe motion, and other scientific concepts, firstly because the units are the most widely used. Unit choice is largely arbitrary, however, because many scientific units are derived from the base SI units, for example, the Newton is kg m s-2. Thus, secondly, more complex units are based on the bedrock of the SI units.</span>