Answer:
The cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.
Explanation:
From the question given above, the following data were obtained:
Height to which the target is located = 50 m
Initial velocity (u) = 20 m/s
To know whether or not the cannon ball is able to hit the target, we shall determine the maximum height to which the cannon ball attained. This can be obtained as follow:
Initial velocity (u) = 20 m/s
Final velocity (v) = 0 (at maximum height)
Acceleration due to gravity (g) = 10 m/s²
Maximum height (h) =?
v² = u² – 2gh (since the ball is going against gravity)
0² = 20² – (2 × 10 × h)
0 = 400 – 20h
Collect like terms
0 – 400 = – 20h
– 400 = – 20h
Divide both side by – 20
h = – 400 / – 20
h = 20 m
Thus, the the maximum height to which the cannon ball attained is 20 m.
From the calculations made above, we can conclude that the cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.
In order for an object to move, the forces acting on it must be ''unbalanced forces'' because balanced forces means equal canceling each other out so 0 to 0 while unbalanced means one side or thing is higher or lower than another and that makes objects move which are unbalanced since a side is not equal to the other.
Explanation:
We have,
Height of object is 5 cm
Object distance from a convex lens is 18 cm
Focal length of convex lens is 10 cm
i.e. h = 5 cm
u = -18 cm
f = +10 cm
Let v is distance of the image from the lens. Using lens formula :

The magnification of lens is :
, h' is height of the image

h' = -5.00 cm (in three significant figures)
Positive will react better together. But opposites will try to get as far away as possible.
the mass of the object determines the amount of inertia in an object