Answer:
number of Al atom =54÷27=2atom of Al. number of o atom = 160÷16=10 atom of o . =214U MASS of ALO2.
evaporation systems allow for an endless source of water. you can grab cups of water straight from the sea or even a lake. the use of evaporation allows for you to drink water thats even healthier than getting it from a cloud and it will leave all of the bad parts that used to be in the water in the first container you pour into. this system is most useful in hot climates such as places near the equator.
Constant Volume Calorimetry, also know as bomb calorimetry, is used to measure the heat of a reaction while holding volume constant and resisting large amounts of pressure. Although these two aspects of bomb calorimetry make for accurate results, they also contribute to the difficulty of bomb calorimetry. In this module, the basic assembly of a bomb calorimeter will be addressed, as well as how bomb calorimetry relates to the heat of reaction and heat capacity and the calculations involved in regards to these two topics.
Introduction
Calorimetry is used to measure quantities of heat, and can be used to determine the heat of a reaction through experiments. Usually a coffee-cup calorimeter is used since it is simpler than a bomb calorimeter, but to measure the heat evolved in a combustion reaction, constant volume or bomb calorimetry is ideal. A constant volume calorimeter is also more accurate than a coffee-cup calorimeter, but it is more difficult to use since it requires a well-built reaction container that is able to withstand large amounts of pressure changes that happen in many chemical reactions.
Most serious calorimetry carried out in research laboratories involves the determination of heats of combustion ΔHcombustion" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ΔHcombustionΔHcombustion, since these are essential to the determination of standard enthalpies of formation of the thousands of new compounds that are prepared and characterized each month. In a constant volume calorimeter, the system is sealed or isolated from its surroundings, and this accounts for why its volume is fixed and there is no volume-pressure work done. A bomb calorimeter structure consists of the following:
Steel bomb which contains the reactantsWater bath in which the bomb is submergedThermometerA motorized stirrerWire for ignition
is usually called a “bomb”, and the technique is known as bomb calorimetry
Another consequence of the constant-volume condition is that the heat released corresponds to qv , and thus to the internal energy change ΔUrather than to ΔH. The enthalpy change is calculated according to the formula
(1.1)ΔH=qv+ΔngRT" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: center; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; width: 10000em !important; position: relative;">ΔH=qv+ΔngRT(1.1)(1.1)ΔH=qv+ΔngRT
Δng" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ΔngΔng is the change in the number of moles of gases in the reaction.
The question is incomplete, the complete question is;
Chris the Chemist was working in the lab, and he wanted to see what would happen if he put copper chloride into a Bunsen burner flame. As soon as he put it in the flame, it began to emit a green color. Which of these BEST describes this outcome?
A) The heat split the nucleus and created a new element.
B) As the copper chloride was heated, electrons were turned into neutrons.
C) As the electrons moved to a higher energy level, a photon of light is emitted.
D) When excited electrons return back to the ground state, a photon of light is emitted.
Answer:
D) When excited electrons return back to the ground state, a photon of light is emitted.
Explanation:
According to Bohr's model of the atom, electrons may absorb energy and move up to higher energy levels.
These electrons quickly return to ground state from such higher energy excited states thereby emitting the excess energy absorbed during excitation.
If the higher energy level is E2 and the ground state is E1 then the energy of the photon emitted when the electron descends from energy level E2 to E1 is;
ΔE = E2 - E1
This photon emitted accounts for the green colour of the copper salt observed when it was heated.
Hello,
<span>B.They have the same number of valence electrons. </span>