The atomic radius decreases across a period from left to right and increases down a given group. The atoms with the largest atomic radii are located in group l and at the bottom of groups. Moving from left to right across a period, electrons are added one at a time to the outer energy shell. Hope this helps!
Answer:
Option B is correct.
4
Explanation:
We know that an atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example, if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
In given problem we are given with 2 neutrons of helium. We know that the atomic number of He is 2. Thus Mass number of He is,
Number of neutrons + number of proton
2 + 2 = 4
Thus, option B is correct.
Single displacement and combustion reactions are ALWAYS redox.
Answer:
3.37 × 10²³ molecules
Explanation:
Given data:
Mass of C₆H₁₂O₆ = 100 g
Number of molecules = ?
Solution:
Number of moles of C₆H₁₂O₆:
Number of moles = mass/molar mass
Number of moles = 100 g/ 180.16 g/mol
Number of moles = 0.56 mol
Number of molecules:
1 mole contain 6.022 × 10²³ molecules
0.56 mol × 6.022 × 10²³ molecules /1 mol
3.37 × 10²³ molecules
Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g