Answer:
I' really don't know I'm sorry
Answer is: C) the fact that the number of lone pairs of electrons on the central atom is greater in the case of water.
Carbon(IV) oxide is nonpolar because CO₂ is linear molecule and the oxygen atoms are symmetrical (bond angles 180°).
Water is polar because of the bent shape of the molecule.
Oxygen atom in water molecule has sp3 hybridization. The bond angle between the two hydrogen atoms is approximately 104.45°.
Oxygen atom has atomic number 8, it means it has eight protons and eight electrons, so atom has neutral charge. Oxygen is a nonmetal.
Electron configuration of oxygen atom: ₈O 1s² 2s² 2p⁴.
Oxygen atom has six valence electrons
, two lone pairs and two electrons that form two sigma bonds with hydrogen atoms.
Carbon is a chemical element with symbol C and atomic number 6, which means it has 6 protons and six electrons. Four valence electrons are in 2s and 2p orbitals.
Electron configuration of carbon atom: ₆C 1s² 2s² 2p².
In carbon dioxide, carban has sp hybridization with no lone pairs.
Bc an MRI is just a scanner it's not and never will be meant for treatment
Answer: Option (a) is the correct answer.
Explanation:
Ionic salts are defined as the salts which tend to contain ionic bonds as there occurs transfer of electrons between its combining atoms.
So, when an ionic salt melts or it is dissolved in water then it will dissociate into its respective ions and as electricity is the flow of electrons or ions. Hence, this salt is then able to conduct electricity.
As covalent compounds are insoluble in water so, they do no dissociate into ions. Hence, they do not conduct electricity.
Similarly, metallic and network solids do not dissociate into ions either when melted or dissolved in water. Therefore, they also do not conduct electricity.
Thus, we can conclude that when a white crystalline salt conducts electricity when it is melted and when it dissolves in water then this bond is of ionic type.
The volume of the 0.279 M Ca(OH)₂ solution required to neutralize 24.5 mL of 0.390 M H₃PO₄ is 51.4 mL
<h3>Balanced equation </h3>
2H₃PO₄ + 3Ca(OH)₂ —> Ca₃(PO₄)₂ + 6H₂O
From the balanced equation above,
- The mole ratio of the acid, H₃PO₄ (nA) = 2
- The mole ratio of the base, Ca(OH)₂ (nB) = 3
<h3>How to determine the volume of Ca(OH)₂ </h3>
- Molarity of acid, H₃PO₄ (Ma) = 0.390 M
- Volume of acid, H₃PO₄ (Va) = 24.5 mL
- Molarity of base, Ca(OH)₂ (Mb) = 0.279 M
- Volume of base, Ca(OH)₂ (Vb) =?
MaVa / MbVb = nA / nB
(0.39 × 24.5) / (0.279 × Vb) = 2/3
9.555 / (0.279 × Vb) = 2/3
Cross multiply
2 × 0.279 × Vb = 9.555 × 3
0.558 × Vb = 28.665
Divide both side by 0.558
Vb = 28.665 / 0.558
Vb = 51.4 mL
Thus, the volume of the Ca(OH)₂ solution needed is 51.4 mL
Learn more about titration:
brainly.com/question/14356286