Answer:
Q = 1057.5 [cal]
Explanation:
In order to solve this problem, we must use the following equation of thermal energy.

where:
Q = heat energy [cal]
Cp = specific heat = 0.47 [cal/g*°C]
T_final = final temperature = 32 [°C]
T_initial = initial temperature = 27 [°C]
m = mass of the substance = 450 [g]
Now replacing:
![Q=450*0.47*(32-27)\\Q=1057.5[cal]](https://tex.z-dn.net/?f=Q%3D450%2A0.47%2A%2832-27%29%5C%5CQ%3D1057.5%5Bcal%5D)
Answer:
M1 V1 = M1 V2 + M2 V3 conservation of momentum
V2 = (M1 V1 - M2 V3) / M1 where V2 = speed of M1 after impact
V2 = (3 * 9 - 1.5 * 5) / 9 = (27 - 7.5) / 9 = 2.17 m/s
Note: All speeds are in the same direction and have the same sign
Having your space clean. have on close toed shoes. have your hair pulled back into a ponytail. keep ur work space clean. wear gloves and goggles. do not have on droopy clothes. follow the steps on the board and double check them.
Well I think B hope this helps
Neither set of choices is correct.
If the distance is tripled, then the forces decrease to
1/9 Fg. and. 1/9 Fe.
Note. When the objects are charged, the gravitational force Fg can almost always be ignored, since Fe is like 10^40 greater when the quantities of mass and charge are similar.