Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
Answer:
14.85 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) of tower = 45 m
Horizontal distance (s) moved by the balloon = 45 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the balloon to hit the shoe of the passerby. This is illustrated below:
Height (h) of tower = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
45 = ½ × 9.8 × t²
45 = 4.8 × t²
Divide both side by 4.9
t² = 45/4.9
Take the square root of both side
t = √(45/4.9)
t = 3.03 s
Finally, we shall determine the magnitude of the horizontal velocity of the balloon as shown below:
Horizontal distance (s) moved by the balloon = 45 m
Time (t) = 3.03 s
Horizontal velocity (u) =?
s = ut
45 = u × 3.03
Divide both side by 3.03
u = 45/3.03
u = 14.85 m/s
Thus, the magnitude of the horizontal velocity of the balloon was 14.85 m/s
I think its all four of them could be wrong but try all four !!!!!!
Answer:
a. dW = ∫pEsinθdθ b. W = p.E
Explanation:
a. We know torque τ = p × E = pEsinθ where θ is the angle between p and E
Let the torque τ rotate the dipole by an amount dθ. So, the workdone dW = ∫τdθ = ∫pEsinθdθ
b. So, the total work done is gotten by integrating from 90 to θ. So,
W = ∫₉₀⁰dW
= ∫₉₀⁰pEsinθdθ
= pE∫₉₀⁰sinθdθ
= pE(cosθ - cos90)
=pEcosθ
= p.E