Average speed = (total distance) / (total time)
Average speed = (4+7+1+2 blox) / (1 hour)
<em>Average speed = 14 blocks/hour</em>
<em></em>
I'm gonna go out on a limb here and take a wild guess:
I'm guessing that there's another question glued onto the end of this one, and it asks you to find either her displacement or her average velocity. I'm so sure of this that I'm gonna give you the solution for that too. If there's no more question, then you won't need this, and you can just discard it. I won't mind.
Average velocity = (displacement) / (time for the displacement)
"Displacement" = distance and direction from the start point to the end point, regardless of how she got there.
Displacement = (4E + 7W + 1E + 2W)
Displacement = (5E + 9W)
<em>Displacement = 4 blocks west</em>
Average velocity = (4 blocks west) / (1 hour)
<em>Average velocity = 4 blocks/hour West</em>
Virtual upright and the same size
Answer:
a)
b)
c)
d)
e)
Explanation:
Given that:
- initial speed of turntable,

- full speed of rotation,

- time taken to reach full speed from rest,

- final speed after the change,

- no. of revolutions made to reach the new final speed,

(a)
∵ 1 rev = 2π radians
∴ angular speed ω:

where N = angular speed in rpm.
putting the respective values from case 1 we've


(c)
using the equation of motion:

here α is the angular acceleration



(b)
using the equation of motion:





(d)
using equation of motion:



(e)
using the equation of motion:



Answer:
EXplained
Explanation:
from conservation of energy
change in potential energy = gain in kinetic energy
so as all he balls are throws from the same height thus the change in potential energy is the same for all the balls thus the gain in kinetic energy is the same for all the balls and as they have the same initial velocity thus the final velocity is the same for all the balls.