Answer:
Explanation:
In case of diffraction , angular width of central maxima =2 λ/d
λ is wave length of light and d is slit width
In case of interference , angular width of each fringe
= λ /D
D is distance between two slits
No of interference fringe in central diffraction fringe
=2 λ/d x D/λ = 2 x D /d = 2 x .24/.03 = 16.
Answer:
According to your question although I think an object undergoing uniform circular motion is moving with a constant speed. Nevertheless, it is accelerating due to its change in direction. The direction of the acceleration is inwards,therefore a force perpendicular to an objects velocity change the direction of the velocity but not its magnitude.
Force (f) = ?
Acceleration (a) = 196 m/s^2
Mass (m) = 0.25 kg
F = (m) • (a)
F = (0.25) • (196)
F = 49 N
Answer : 49 N
I hope that helps you!! Any more questions??
Answer: 7.38 km
Explanation: The attachment shows the illustration diagram for the question.
The range of the bomb's motion as obtained from the equations of motion,
H = u(y) t + 0.5g(t^2)
U(y) = initial vertical component of velocity = 0 m/s
That means t = √(2H/g)
The horizontal distance covered, R,
R = u(x) t = u(x) √(2H/g)
Where u(x) = the initial horizontal component of the bomb's velocity = 287 m/s, H = vertical height at which the bomb was thrown = 3.24 km = 3240 m, g = acceleration due to gravity = 9.8 m/s2
R = 287 √(2×3240/9.8) = 7380 m = 7.38 km
Answer:
C
Explanation:
Gravity is the main reason that make our planets to pull each other