Nearly every cell in a person's body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA)
OH- is common to bases.
Explanation:
The base is a is an ionic compounds which when placed in aqueous solution dissociates in to a cation and an anion OH-.
The presence of OH- in the solution shows that the solution is basic or alkaline.
From Bronsted and Lowry concept base is a molecule that accepts a proton for example in NaOH, Na is a proton donor and OH is the proton acceptor.
A base accepts hydrogen ion and the concentration of OH is always higher in base.
There is a presence of conjugate acid and conjugate base in the Bronsted and Lowry acid and base.
Conjugate acid is one which is formed when a base gained a proton.
Conjugate base is one which is formed when an acid looses a proton.
And from the Arrhenius base Theory, the base is one that dissociates in to water as OH-.
The balanced equation is attached in the image below. The coefficients are 2, 2, blank.
Answer:
The density is 5 g/cm3
Explanation:
The density (δ) is the ratio between the mass and the volume of a compound:
δ=m/v= 10 g/2 cm3= 5 g/cm3
The answer would be b. Temperature of the solution increases
Temperature determines the kinetic energy of the water molecule. Higher temperature will cause the molecule to moves faster and the compound (KNO3) could break solute molecule easier make it become more soluble. A higher pressure will increase the solubility of a gas, not solid