Answer:
-2
Explanation:
Gibbs free energy is defined by enthalpy of the system minus the product of the temperature and entropy and represented by the formula below:
G = H - TS where G = Gibbs free energy, H = enthalpy and T = temperature and S = entropy
change in entropy is defined by the formula below
ΔG = ΔH - Δ(TS) if the temperature is not constant, but if the temperature is constant then
ΔG = ΔH - TΔS
in according to the question (TS) is treated together.
to the solution
increase in H = 10 units , increase in the product of temperature and entropy = 12 units
ΔG = 10 - 12 = -2
An element is the simplest form of matter that has a unique set of properties. Elements cannot be broken down into a simpler substance. Likewise, one element cannot be chemically converted into a different element.
HOPE THIS HELPS
Answer:
As resistance increases, current increases. As resistance increases, current decreases. As resistance increases, current stays the same.
Answer:
16:1
Explanation:
Atoms of element X weigh 32 times more than atoms of element Y. We can write this in a symbolic way.
mX = 32 mY [1]
where,
- mX and mY are the masses of X and Y, respectively
A compound has the formula: XY₂, that is, in 1 molecule of XY₂ there is 1 atom of X and 2 atoms of Y. The ratio of the mass of X to the mass of Y in this compound equals:
mX/2 mY [2]
If we substitute [1] in [2], we get:
mX/2 mY = 32 mY/2 mY = 16 = 16:1
Answer:
a) Na
c) Na
b) Sr
d) Ca
Explanation:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.