Answer:
The correct answer is A : Orientation dependence of normal and shear stresses at a point in mechanical members
Explanation:
Since we know that in a general element of any loaded object the normal and shearing stresses vary in the whole body which can be mathematically represented as

And 
Mohr's circle is the graphical representation of the variation represented by the above 2 formulae in the general oriented element of a body that is under stresses.
The Mohr circle is graphically displayed in the attached figure.
Answer: a) 135642 b) 146253
Explanation:
A)
1- the bankers algorithm tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, as stated this has the greatest degree of concurrency.
3- reserving all resources in advance helps would happen most likely if the algorithm has been used.
5- Resource ordering comes first before detection of any deadlock
6- Thread action would be rolled back much easily of Resource ordering precedes.
4- restart thread and release all resources if thread needs to wait, this should surely happen before killing the thread
2- only option practicable after thread has been killed.
Bii) ; No. Even if deadlock happens rapidly, the safest sequence have been decided already.
Answer:
View Image
Explanation:
Initialize your variable as a float or double since you're going to be using fractions in your answer.
User scanf() to get user input.
Print out the sum, product, quotient, and difference between the two numbers.
Watts I believe is the answer
Answer:
the torque capacity is 30316.369 lb-in
Explanation:
Given data
OD = 9 in
ID = 7 in
coefficient of friction = 0.2
maximum pressure = 1.5 in-kip = 1500 lb
To find out
the torque capacity using the uniform-pressure assumption.
Solution
We know the the torque formula for uniform pressure theory is
torque = 2/3 ×
× coefficient of friction × maximum pressure ( R³ - r³ ) .....................................1
here R = OD/2 = 4.5 in and r = ID/2 = 3.5 in
now put all these value R, r, coefficient of friction and maximum pressure in equation 1 and we will get here torque
torque = 2/3 ×
× 0.2 × 1500 ( 4.5³ - 3.5³ )
so the torque = 30316.369 lb-in