Answer:
(1) An object that’s negatively charged has more electrons than protons.
(2) An object that’s positively charged has fewer electrons than protons.
(3) An object that’s not charged has the same number of electrons than protons.
Explanation :
Objects have three subatomic particles that are Electrons, protons, and neutrons.
Protons and neutrons are found in the nucleus and electrons rotate or move outside the nucleus. Naturally, protons are positively charged, neutrons have no charge, and electrons are negatively charged.
Therefore, an object that is negatively charged has more electrons than protons. An object that is not charged has the same number of electrons than protons. An object that is positively charged has fewer electrons than protons.
The mass of the ion is 5.96 X 10⁻²⁵ kg
<u>Explanation:</u>
The electrical energy given to the ion Vq will be changed into kinetic energy 
As the ion moves with velocity v in a magnetic field B then the magnetic Lorentz force Bqv will be balanced by centrifugal force
.
So,

and

Right from these eliminating v, we can derive

On substituting the value, we get:

m = 5.96 X 10⁻²⁵ kg.
One cubic centimeter and one milliliter are equal volumes.
This is an example of the Newton`s Second Law:
F = m * a
a = F / m
F = 8 N, m = 2 kg.
a = 8 N : 2 kg
Answer:
a = 4 m/s²
Answer:
Mass released = 8.6 g
Given data:
Initial number of moles nitrogen= 0.950 mol
Initial volume = 25.5 L
Final mass of nitrogen released = ?
Final volume = 17.3 L
Formula:
V₁/n₁ = V₂/n₂
25.5 L / 0.950 mol = 17.3 L/n₂
n₂ = 17.3 L× 0.950 mol/25.5 L
n₂ = 16.435 L.mol /25.5 L
n₂ = 0.644 mol
Initial mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.950 mol × 28 g/mol
Mass = 26.6 g
Final mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.644 mol × 28 g/mol
Mass = 18.0 g
Mass released = initial mass - final mass
Mass released = 26.6 g - 18.0 g
Mass released = 8.6 g
Read more on Brainly.com - brainly.com/question/15623698#readmore