the answer for the question is D. all of the above
Answer:
(a) I_A=1/12ML²
(b) I_B=1/3ML²
Explanation:
We know that the moment of inertia of a rod of mass M and lenght L about its center is 1/12ML².
(a) If the rod is bent exactly at its center, the distance from every point of the rod to the axis doesn't change. Since the moment of inertia depends on the distance of every mass to this axis, the moment of inertia remains the same. In other words, I_A=1/12ML².
(b) The two ends and the point where the two segments meet form an isorrectangle triangle. So the distance between the ends d can be calculated using the Pythagorean Theorem:

Next, the point where the two segments meet, the midpoint of the line connecting the two ends of the rod, and an end of the rod form another rectangle triangle, so we can calculate the distance between the two axis x using Pythagorean Theorem again:

Finally, using the Parallel Axis Theorem, we calculate I_B:

Gay-Lussac's Law shows the direct relationship between pressure and temperature for an ideal gas with constant volume. Mathematically it is
This particular has a lot of application in our everyday life. In cooking, for example, we apply this concept when using a pressure cooker. We increase/decrease the temperature to meet the right amount of pressure.
In addition, knowing that pressure increases when temperature does can help you with road safety. Knowing that temperature affects heat directly, we must be careful in making sure that tires are not overheated or else they explode out of too much pressure inside.
Answer:
Please see below as the answer is self-explanatory.
Explanation:
- The visible range extends roughly from 400 nm (violet) to 700 nm (red).
- Below the violet is the ultra-violet spectrum (with higher energy) and above red, we have the infra-red spectrum.
- The wavelengths in the range of 650 to 690 nm have red as the dominant color.