The study of EM is essential to understanding the properties of light, its propagation through tissue, scattering and absorption effects, and changes in the state of polarization. ... Since light travels much faster than sound, detection of the reflected EM radiation is performed with interferometry.
It'll be 152 Hz at the exact instant the bumblebee
is right at the tip of your nose, on his way past you.
Before he gets there, while he's coming at you,
he sounds like a frequency higher than 152 Hz.
After he passes by, and is going away from you,
he sounds like a frequency lower than 152 Hz.
The process you're fishing for is "polarization", but that's a
misleading description.
Polarization doesn't do anything to change the light waves.
It simply filters out (absorbs, as with a polarizing filter) the
light waves that aren't vibrating in the desired plane, and
allows only those that are to pass.
The intensity of a light beam is always reduced after
polarizing it, because much (most) of the original light
has been removed.
A laser light source may be thought of as an exception,
since everything coming out of the laser is polarized.
Velocity = distance / time = ( 2 * pi * r ) / t = 20.583 m/s
<span>x component = sine ( 32 ° ) * 20.583 = 10.91 m/s
hope this helps :)
</span>
Answer:C (198 seconds)
Explanation: The cyclist makes the first lap in (180.00 - 6.00) = 174.00 seconds. The average time per lap for all three circuits is (600.00 - 6.00) = 594/3 = 198 seconds.