Answer:
The value of acceleration that accomplishes this is 8.61 ft/s² .
Explanation:
Given;
maximum distance to be traveled by the car when the brake is applied, d = 450 ft
initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s
final velocity of the car when it stops, v = 0
Apply the following kinematic equation to solve for the deceleration of the car.
v² = u² + 2as
0 = 88.02² + (2 x 450)a
-900a = 7747.5204
a = -7747.5204 / 900
a = -8.61 ft/s²
|a| = 8.61 ft/s²
Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .
Answer:
Answer: The spring constant of the spring is k = 800 N/m, and the potential energy is U = 196 J. To find the distance, rearrange the equation: The equation to find the distance the spring has been compressed is therefore: The spring has been compressed 0.70 m, which resulted in an elastic potential energy of U = 196 J being stored.
Explanation:
<h2>
Entire trip takes 1.22 seconds.</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 0.866 s
Substituting
s = ut + 0.5 at²
s = 0 x 0.866 + 0.5 x 9.81 x 0.866²
s = 3.68 m
Halfway is 3.68 m
Total height = 2 x 3.68 = 7.36 m
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = ?
Displacement, s = 7.36 m
Substituting
s = ut + 0.5 at²
7.36 = 0 x t + 0.5 x 9.81 x t²
t = 1.22 s
Entire trip takes 1.22 seconds.
Answer:
do we have to choose 2 answers here?