The answer is head-to-tail joining of monomers. Monomer used in condensation have two functional groups that combine to form amide and ester linkages. When this reaction occurs, water molecules is removed and that is why it is called a condensation reaction.
Answer:
I don't know.
Explanation:
I actually don't know the answer so I wrote the answer is "I don't know" or simply "I dunno".
Its FeSO3 or iron(iii)sulfite = Fe2(SO3)3
Answer:
0.7561 g.
Explanation:
- The hydrogen than can be prepared from Al according to the balanced equation:
<em>2Al + 6HCl → 2AlCl₃ + 3H₂,</em>
It is clear that 2.0 moles of Al react with 6.0 mole of HCl to produce 2.0 moles of AlCl₃ and 3.0 mole of H₂.
- Firstly, we need to calculate the no. of moles of (6.8 g) of Al:
no. of moles of Al = mass/atomic mass = (6.8 g)/(26.98 g/mol) = 0.252 mol.
<em>Using cross multiplication:</em>
2.0 mol of Al produce → 3.0 mol of H₂, from stichiometry.
0.252 mol of Al need to react → ??? mol of H₂.
∴ the no. of moles of H₂ that can be prepared from 6.80 g of aluminum = (3.0 mol)(0.252 mol)/(2.0 mol) = 0.3781 mol.
- Now, we can get the mass of H₂ that can be prepared from 6.80 g of aluminum:
mass of H₂ = (no. of moles)(molar mass) = (0.3781 mol)(2.0 g/mol) = 0.7561 g.
Colligative
properties calculations are used for this type of problem. Calculations are as
follows:<span>
ΔT(freezing point) = (Kf)(molality)
ΔT(freezing point)
= 1.86 °C kg / mol (molality)
</span>Tf - 102.08 = 1.86m
Tf = 1.86m + 102.08
The concetration of the solution is needed in order to obtain a specific value.