Answer:
a)
, b) 
Explanation:
a) The potential energy is:



b) Maximum final speed:

The final speed is:


Answer:
The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.
Explanation:
In this ideal engine, none of these events would happen due to the nature of the efficiency.
We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.
n=W, total/(E, available).
However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.
Answer:
you count the squares or messure it
Explanation:
you can raw equal squares about 1 cm wide if possible all equal and count the squares eg theres 10 squares (small hand) so that would be 10cm squared
The gravitational force between a mass and the Earth is the object'sweight. Mass is considered a measure of an object's inertia, and its weight is the force exerted on the object in a gravitational field. On the surface of the Earth, the two forces are related by the acceleration due to gravity: Fg = mg.
Hoped this helped!
Assuming an ideal gas, the speed of sound depends on temperature
only. Air is almost an ideal gas.
Assuming the temperature of 25°C in a "standard atmosphere", the
density of air is 1.1644 kg/m3, and the speed of sound is 346.13 m/s.
The velocity can't be specified, since the question gives no information
regarding the direction of the sound.