Answer:
<em>d. unchanged.</em>
Explanation:
The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.
In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from
v = fλ
that the frequency is tied to the wave, and does not change throughout the waveform.
where v is the speed of the sound wave
f is the frequency
λ is the wavelength of the sound wave.
90for each walk because 6• 15 = 90
Answer:
the final velocity of the two blocks is
the distance that A slides relative to B is
Explanation:
From the diagram below;
acceleration of A relative to B is : 
where
v = u + at

Making t the subject of the formula; we have:


which implies the distance that A slides relative to B.
The final velocities of the two blocks can be determined as follows:
v = u + at

Thus, the final velocity of the two blocks is
Answer:
Explanation:
Moving a magnet might cause a change in the magnetic field going through the solenoid. Whether or not it will change depends on the movement.
According to Faraday's law of induction a voltage is induced in a coil by a change in the magnetic flux. Magnetic flux is defined as the dot product of the magnetic field (a vector field) by the area enclosed by a loop of the coil.

The voltage is induced by the variation of the magnetic flux:

Where
ε: electromotive fore
N: number of turns in the coil
ΦB: magnetic flux
Moving the magnet faster would increase the rare of change of the magnetic flux, resulting in higher induced voltage.
Turning the magnet upside down would invert the direction of the magnetic field, reversing the voltage induced.
Answer:
The neutron loses all of its kinetic energy to nucleus.
Explanation:
Given:
Mass of neutron is 'm' and mass of nucleus is 'm'.
The type of collision is elastic collision.
In elastic collision, there is no loss in kinetic energy of the system. So, total kinetic energy is conserved. Also, the total momentum of the system is conserved.
Here, the nucleus is still. So, its initial kinetic energy is 0. So, the total initial kinetic energy will be equal to kinetic energy of the neutron only.
Now, final kinetic energy of the system will be equal to the initial kinetic energy.
Now, as the nucleus was at rest initially, so the final kinetic energy of the nucleus will be equal to the initial kinetic energy of the neutron.
Thus, all the kinetic energy of the neutron will be transferred to the nucleus and the neutron will come to rest after collision.
Therefore, the neutron loses all of its kinetic energy to nucleus.