Answer:
The maximum height the pebble reaches is approximately;
A. 6.4 m
Explanation:
The question is with regards to projectile motion of an object
The given parameters are;
The initial velocity of the pebble, u = 19 m/s
The angle the projectile path of the pebble makes with the horizontal, θ = 36°
The maximum height of a projectile,
, is given by the following equation;

Therefore, substituting the known values for the pebble, we have;

Therefore, the maximum height of the pebble projectile,
≈ 6.4 m.
At surface,
v = kq/r
And potential energy of an electron is given by,
PE = -ev = -ekq/r
At escape velocity,
PE + KE = 0.
Therefore,
1/2mv^2 - ekq/r =0
1/2mv^2 = ekq/r
v = Sqrt [2ekq/mr], where v = escape velocity, e = 1.6*10^-19 C, k = 8.99*10^9 Nm^2/C^2, m = 9.11*10^-31 kg, r = 1.1*10^-2 m, q = 8*10^-9 C
Substituting;
v = Sqrt [(2*1.6*19^-19*8.99*10^9*8*10^-9)/(9.11*10^-31*1.1*10^-2)] = 47949357.23 m/s ≈ 4.795 *10^7 m/s
Answer:

Explanation:
n = Order = 1
c = Speed of light = 
f = Frequency = 
= Angle = 
Lattice spacing is given by

The lattice spacing of the crystal is 
To solve this problem, we will apply the concepts related to the kinematic equations of linear motion, which define speed as the distance traveled per unit of time. Subsequently, the wavelength is defined as the speed of a body at the rate of change of its frequency. Our values are given as,



Velocity of the wave,



Wavelength of the wave,




Therefore the wavelength of the waves on the string is 11.53 cm
Answer:
borosilicate glass
Explanation:
headlamp glass is a borosilicate glass by gravity feed