Answer:
(a) B = 5.6 micro Tesla
Explanation:
Current in the wire, i = 140 A
distance, r = 5 m
The formula for the magnetic field at a distance r due to the current carrying wire


B = 5.6 x 10^-6 Tesla
B = 5.6 micro Tesla
(b) As the magnetic field of earth at this site is 20 micro tesla so the magnetic field due to current carrying wire interfere the magnetic compass.
It will be 49 Newtons of force in the down direction. To find the force in newtons, you multiply the mass (5 kg) by the gravity (which if 9.8).
Answer:
Explained below
Explanation:
To explain this, let's consider a tennis ball being launched from the top of a very high building.
Now, if the tennis ball is launched horizontally without any upward angle but with an initial velocity of 10 m/s. In this motion, If there is no gravity, the tennis ball would continue in motion at that same speed of 10 m/s in the horizontal direction. However, in reality, gravity causes the tennis ball to accelerate downwards at a rate of 9.8 m/s for every second. This implies that the vertical velocity component is changing at the rate of 9.8 m/s every second.
Thus, after 1 second, horizontal velocity component will remain 10 m/s and vertical component will be 9.8 m/s × 1 = 9.8 m/s downwards.
Also, after 2 seconds, the vertical velocity component will remain 10 m/s, however the vertical component will now be 9.8 × 2 = 19.6 m/s downwards.
Same procedure is repeated as t increases by 1 second.