Responder:
A) ω = 565.56 rad / seg
B) f = 90Hz
C) 0.011111s
Explicación:
Dado que:
Velocidad = 5400 rpm (revolución por minuto)
La velocidad angular (ω) = 2πf
Donde f = frecuencia
ω = 5400 rev / minuto
1 minuto = 60 segundos
2πrad = I revolución
Por lo tanto,
ω = 5400 * (rev / min) * (1 min / 60s) * (2πrad / 1 rev)
ω = (5400 * 2πrad) / 60 s
ω = 10800πrad / 60 s
ω = 180πrad / seg
ω = 565.56 rad / seg
SI)
Dado que :
ω = 2πf
donde f = frecuencia, ω = velocidad angular en rad / s
f = ω / 2π
f = 565.56 / 2π
f = 90.011669
f = 90 Hz
C) Periodo (T)
Recordar T = 1 / f
Por lo tanto,
T = 1/90
T = 0.0111111s
Answer:
Resultant force, R = 10 N
Explanation:
It is given that,
Force acting along +x direction, 
Force acting along +y direction, 
Both the forces are acting on a point object located at the origin. Let the resultant force of the object is given by R. So,

Here 


R = 10 N
So, the resultant force on the object is 10 N. Hence, this is the required solution.
Answer:
The metalloids are located on the right side of the periodic table in a "step-like" arrangement.
All of the possible metalloids are:
boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), and polonium (Po)
The answer is the last choice.
Its electrical potential energy stays the same because it has the same electric potential. The reason why is that moving the charge towards X does not change the distance of the negative charge between the plates. The Electrical potential energy of a particle is the result energy by virtue of its position from the electrical fields produce by the plates both positive and negative. Since the charge is still equidistant to each other (assuming based from the diagram) no change in terms of electrical energy consumption or work was done.
Answer:
<h2>
Work done by the gas is given as</h2><h2>

</h2>
Explanation:
As we know that the process is isothermal so here work done is given as

here we know that


now we have

so we have
