A. 0.5kg
To get this answer you need to follow the equation of KE=0.5*mv^2
But we don't have the m part in the equation. So just plug in the numbers to see which works best, though I can tell you before we do that the answer would be a.
As you may know, gravity, is a force of 9.8 m/s. And we want to get 9.8 Joules. So if we take a half a kg stone, release it at one meter, we get half of the normal gravity pull, 4.90 Joules. That means if we take half a kg stone and drop it at a doubled height, we get 9.8 Joules.
That is also to say that if we have a 1kg stone and drop it at one meter you will get the normal pull of gravity in Joules, 9.8J.
Be careful though, this does not mean if you drop a 1kg stone and a .5 kg stone the 1kg will hit first. This simply means that the 1kg stone will have twice the Joules that the .5kg stone has.
All wheelchairs may be secured
so that the user is facing the curb side of the vehicle is true. The answer is
letter A. It provides a unique 180 degree powered rotation which makes it
possible to raise, lower and rotate fully.
5) 204 meters
6)
A) 150 miles
B)241 km
Answer:
the kinetic energy lost due to friction is 22.5 J
Explanation:
Given;
mass of the block, m = 0.2 kg
initial velocity of the block, u = 25 m/s
final velocity of the block, v = 20 m/s
The kinetic energy lost due to friction is calculated as;
Therefore, the kinetic energy lost due to friction is 22.5 J
Answer:
A, The same amount of gravity
Explanation: