Given :
Object A is 71 degrees and object B is 75 degrees .
To Find :
How will thermal energy flow.
Solution :
We know, by law of thermodynamics thermal energy will flow from higher temperature to lower temperature.
So, in the given question energy will flow from object B from object A.
Hence, this is the required solution.
Answer:
(a): The resultant force acting on the object are F= (5.99 i + 14.98 j).
(b): The magnitude of the resultant force are F= 16.4 N < 68.19º .
Explanation:
m= 3kg
a= 2 i + 5 j = 5 .38 < 68.19 º
F= m * a
F= 3* ( 5.38 < 68.19º )
F= 16.4 N < 68.19º
Fx= F * cos(68.19º)
Fx= 5.99
Fy= F* sin(68.19º)
Fy= 14.98
When light is reflected by a mirror, the angle of incidence is always <span>A. equal to the angle of reflection. We know this by the Law of Reflection.</span>
Answer:
A
B

C

D

Explanation:
Considering the first question
From the question we are told that
The spring constant is 
The potential energy is 
Generally the potential energy stored in spring is mathematically represented as 
=>
=>
=>
Considering the second question
From the question we are told that
The mass of the dart is m = 0.050 kg
Generally from the law of energy conservation

=> 
=> 
Considering the third question
The height at which the dart was fired horizontally is 
Generally from the law of energy conservation

Here KE is kinetic energy of the dart which is mathematical represented as

=> 
=> 
=> 
Considering the fourth question
Generally the total time of flight of the dart is mathematically represented as

=> 
=> 
Generally the horizontal distance from the equilibrium position to the ground is mathematically represented as

=> 
=> 
Strange as it may seem, the object would keep moving, in a straight line and at the same speed, until it came near another object. Its momentum and kinetic energy would never change. It might continue like that for a billion years or more.
Have a look at Newton's first law of motion.