Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
Answer:
Calculating Coefficient of friction is 0.229.
Force is 4.5 N that keep the block moving at a constant speed.
Explanation:
We know that speed expression is as
.
Where,
is initial speed, V is final speed, ∆s displacement and a acceleration.
Given that,
=3 m/s, V = 0 m/s, and ∆s = 2 m
Substitute the values in the above formula,

0 = 9 - 4a
4a = 9

is the acceleration.
Calculating Coefficient of friction:


Compare the above equation

Cancel "m" common term in both L.H.S and R.H.S





Hence coefficient of friction is 0.229.
calculating force:


F = 4.5 N
Therefore, the force would be <u>4.5 N</u> to keep the block moving at a constant speed across the floor.
If only 1 option is correct then it is (D)
All the others can also make one component negative, all depends how u measured the angle.
all the best
I’m not too sure but I think it’s 8,91 m/s2